

How to Write Data Upgrade Scripts for Microsoft Dynamics
AX 2012
Microsoft Corporation

Published: March 2014

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

2

Microsoft Dynamics is a line of integrated, adaptable business management solutions

that enables you and your people to make business decisions with greater confidence.

Microsoft Dynamics works like and with familiar Microsoft software, automating and

streamlining financial, customer relationship and supply chain processes in a way that

helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989

Worldwide +1-701-281-6500

www.microsoft.com/dynamics

This document is provided “as-is”. Information and views expressed in this document,

including URL and other Internet Web site references, may change without notice. You

bear the risk of using it.

Some examples depicted herein are provided for illustration only and are fictitious. No

real association or connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in

any Microsoft product. You may copy and use this document for your internal, reference

purposes. You may modify this document for your internal, reference purposes.

© 2014 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Dynamics, Active Directory, Excel, Hyper-V, Internet Explorer,

Outlook, SharePoint, SQL Server, Visual Studio, Windows, Windows PowerShell,

Windows Server, and Windows Vista are trademarks of the Microsoft group of

companies. All other trademarks are property of their respective owners.

http://msdn.microsoft.com/en-us/library/gg860898(v=AX.60).aspx

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

3

Table of Contents
Introduction .. 6

Upgrade readiness scripts: .. 14

Live and Delta preprocessing scripts: .. 14

Single user scripts: .. 15

Preprocessing forms: ... 15

Attribute based upgrade framework (target side scripts only): .. 17

Presynchronization scripts: .. 18

Postsynchronization scripts: ... 19

The Preprocess Upgrade Checklist (souce environment) ..20

The Upgrade Checklist (target environment) ...22

How to Add New Items to the Upgrade Checklist ... 24

The Data Upgrade Framework for the Source Environment ... 26

Defining transformation and preprocessing scripts ... 26

1. Create transformation .. 26

2. Define source table ... 27

3. Define source fields ... 27

6. Per Company To Global Table ... 27

7. Schedule preprocess scripts ... 28

8. Save transformation... 29

9. Define dependencies between transformations .. 30

10. Supporting Pause/Resume Functionality and Committing Data in Batches 30

11. Logging Data Issues in Validation Scripts ... 35

12. Modify a subset of records in a table during upgrade .. 37

Writing Data Upgrade Scripts for Source Environment ..38

This section contains information on writing Live preprocessing scripts and writing Delta and single user mode

preprocessing scripts. .. 38

Writing Live preprocessing scripts ... 38

Writing Delta and single user mode preprocessing scripts... 39

The Data Upgrade Framework for the Target Environment .. 41

SYS Versions and Data Upgrade of Interim SYS releases ... 44

Writing Data Upgrade Scripts for ISV or customized solution in the Target Environment 46

Create a single upgrade script that combines changes across multiple product versions............................... 47

Using Configuration Key to Remove Obsolete Objects after Upgrade ... 47

Data Upgrade Scripts in the target environment ...48

Writing Data Upgrade Scripts for Target Environment ..50

Upgrade script configuration keys ... 52

Script Dependencies ... 54

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

4

Best Practices for Writing Data Upgrade Scripts ... 57

Best Practice Checks .. 57

In Microsoft Dynamics AX 2010, there are now several best practice checks that help to verify
the completeness of upgrade script attributes. ..57

Transaction and Idempotency ..58

Coding Best Practices ...59

Indicating Progress ... 59

Documenting Scripts ... 59

Deleting a Table or Field from the Data Model .. 59

Unique Indexes .. 60

Consideration for date effective table in upgrade script .. 61

Fixing table/field mapping errors .. 61

Deleting Configuration Keys .. 64

Referencing Number Sequences within upgrade scripts ... 64

Using the Set-based Operators Delete_From, Update_RecordSet and Insert_SecordSet 66

Calling skipDataMethods and skipDatabaseLog Before Calling Update_RecordSet or Delete_From 67

Using RecordInsertList Class to Batch Multiple Inserts .. 67

Optimizing X++ logic .. 67

Appendix 1: Guidelines for Writing Direct SQL in Upgrade Scripts ... 70

Using Set-Based Updates in X++ ...70

Executing Direct SQL from X++ ...71

How to Execute Direct SQL for X++ ... 71

Best Practices Warning when Executing Direct SQL ... 71

Using Utility Functions to Execute Direct SQL .. 72

Documenting Direct SQL .. 72

Using Table Names in Direct SQL .. 72

Adding Literals in Direct SQL .. 72

Specifying DataAreaId in Where-Clauses ... 73

Determining Whether a Table or Field Exists in the Database ... 75

Defining String Lengths .. 75

Applying LTrim for String Comparisons in the WHERE Clause ... 75

Implementing Complex Inserts and Updates in Direct SQL ...77

Creating Stored Procedures and Functions ... 77

Implementing Set-Based Updates with Joins ... 78

Using Direct SQL for Set-Based Updates .. 79

Using a Set-Based Insert Operation .. 81

System Sequence Considerations ... 81

RECID in Microsoft Dynamics AX 2012 .. 81

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

5

Assigning RECID on INSERT ... 83

Looking Up Table ID and Field IDs ... 84

Assigning Business Sequences on Insert .. 84

Calling FN_FMT_NUMBERSEQUENCE .. 87

Appendix 2: Debugging batch jobs. ... 88

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

6

Introduction

This document describes how to use the Microsoft Dynamics™ AX Data Upgrade Framework and how

to write data upgrade scripts for customer data upgrade data models (Microsoft Dynamics AX tables).

The data upgrade framework can be used to perform data correction or data transformation.

The intended audience for this document is developers. If you have modified the schema of a previous

version of Microsoft Dynamics AX, then you must use the upgrade framework to write a

corresponding upgrade script to update the data.

This document is based on the Microsoft Dynamics AX 2012 Data Upgrade Framework. It has been

updated regarding the new data upgrade framework and best practices for performance.

Microsoft Dynamics AX 2012 supports upgrading data in the following ways:

 Microsoft Dynamics AX 4.0 to Microsoft Dynamics AX 2012

 Microsoft Dynamics AX 2009 to Microsoft Dynamics AX 2012

Terms and Abbreviations
The following table provides terms and definitions that relate to the data upgrade process.

Term/Abbreviation Definition

Source environment or

source system

The Microsoft Dynamics AX system which is being upgraded.

The supported source systems for direct upgrade to Microsoft

Dynamics AX 2012 are:

 Microsoft Dynamics AX 4.0

 Microsoft Dynamics AX 2009

The upgrade starts while the source environment is still live, but

there is minimal impact to the live system.

Transformation Data is transformed between source and target environment by

using field mapping and joins between necessary tables.

Examples include the Address table normalization and the

Dimension table normalization.

Source affected table Tables and fields within source environment that have to be updated

with transformations. Examples are Dimension fields and Address

fields.

No update or changes are made to the source table directly,

changes are made to shadow tables.

Source non-affected table Tables that have to be copied to the target system as they are with

the exception of mapping transformation.

Shadow table Auxiliary table created on the source environment. The shadow

tables will contain all fields from the source tables which have to be

updated.

Dictionary table New target Microsoft Dynamics AX 2012 tables. These tables will be

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

7

imported into the source environment for the application pre-

upgrade checklist, and upgrade script execution where needed. The

definition of the table must match the target system, the dictionary

tables will be copied to the target as they are.

Target affected table Target tables affected by transformations. The table columns will be

partially copied from the source tables, and partially from the

shadow tables.

Target non-affected table Tables copied unchanged from the source database. These tables

already have the Microsoft Dynamics AX 2012 schema. Mapping

between Microsoft Dynamics AX 4.0, Microsoft Dynamics AX 2009,

and Microsoft Dynamics AX 2012 schemas must be created on copy

(similar to SYNC).

Preprocess upgrade script Preprocess upgrade script executed by the upgrade framework for a

particular table in the source environment based on the template

provided by an application team.

Preprocess upgrade script

template

Template of a preprocess script created by an application team and

registered with the upgrade framework API. Template provides the

following for the upgrade framework:

 Table and fields that will be involved in the application pre-

upgrade checklist.

 Business logic for the source data that occurs for the

application pre-upgrade checklist.

Application pre-upgrade

checklist tasks

Application pre-upgrade checklist tasks that require user

intervention to clean-up before the upgrade, for example Address

normalization.

Many of the addresses are duplicate. As a result, the application pre-

upgrade checklist form will provide users with the ability to decide

how the master address entity should look.

Delta upgrade script or

delta job

Upgrade scripts implemented by application teams to find the

changes within table records since the last run of the related

preprocessing upgrade scripts.

Single-user mode No active user transaction is running on the source system. Logic will

check if only one administrator user is connected to the source

Microsoft Dynamics AX system.

Exception tables System tables that are specific to the installation that will be

excluded from the copy operation. For example, License tables.

Validation script Special upgrade scripts defined to identify issues with upgrade or

data upgrade. These kinds of upgrade scripts should read data from

live Microsoft Dynamics AX tables and display messages to take

corrective action as needed.

Upgrade throttling Method used to pause scripts, resume scripts, or change the amount

of resources assigned to execute a script.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

8

Throttling APIs APIs provided by the upgrade framework that can be used by

upgrade scripts to support pause and resume functionality.

How to Upgrade Data for a Major Release or Service Pack

The data upgrade framework drives the data upgrade scripts that transform an older version of the

Microsoft Dynamics AX database to the new version. These steps are described in later sections.

The upgrade process consists of two parts:

 Preprocess in the source environment

 Upgrade in the target environment

The following table describes the scripts that run on the source environment:

Script type Description

Live Preprocessing script that is implemented to run on a live source system. The

Microsoft Dynamics AX system is available to the user and the upgrade occurs in

the background. Live preprocessing scripts write prepared data into the shadow

and dictionary tables that were created by importing the preprocessing XPOs.

These scripts must be implemented by using row-by-row operations, and commit

after a predetermined number of transactions. To schedule live preprocessing

scripts, in the preprocessing upgrade checklist, click Run live preprocessing

scripts. The scripts that run are specified in the initTransformationJobs method

with a definition of SetLivePreProcessingScript in ReleaseUpdateTransformDB40_

and ReleaseUpdateTransformDB50_ classes.

Delta Preprocessing scripts are implemented to check for changes to the production

data that have occurred since you started running the live preprocessing scripts.

Similar to the live preprocessing scripts, the delta scripts processes the updated

data into the shadow and dictionary tables. Delta scripts are designed to run

multiple times before entering into the single-user mode. To schedule Delta

preprocessing scripts, in the preprocessing upgrade checklist, click Run delta

preprocessing scripts. The scripts that run are specified in the

initTransformationJobs method with a definition of SetDeltaPreProcessingScript

in the ReleaseUpdateTransformDB40_ and ReleaseUpdateTransformDB50_

classes.

Single-user Preprocessing scripts are implemented to run on the source system during

single-user mode. Single-user mode occurs on the source system to make sure

that the system is unavailable for business use. In single-user mode, only an

upgrade user who has administrative permissions is connected. No other users

can start a client session when the source system is in final preprocessing and

source data is being bulk copied to the Microsoft Dynamics AX 2012 target

system. Single-user preprocessing scripts must be written as set-based

operations. To schedule single-user preprocessing scripts, in the preprocessing

upgrade checklist, click Run single-user mode preprocessing scripts. The scripts

that run are specified in the initTransformationJobs method with a definition of

SetSingleuserPreProcessingScript in ReleaseUpdateTransformDB40_ and

ReleaseUpdateTransformDB50_ classes.

Upgrade Help to identify the issues that cause an upgrade to fail. These scripts read AOT

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

9

Readiness metadata or data and then categorize the results into an error or advisory in the

upgrade validation result. Errors must be fixed before you continue with the

upgrade. Advisory are designed to improve the upgrade experience by pointing

out issues which may improve the efficiency of upgrade, or issues which require

manual actions. To schedule upgrade readiness scripts, in the preprocessing

upgrade checklist, click on the Upgrade Readiness check. The scripts that run are

specified in the initTransformationJobs method with a definition of

SetValidatePreProcessingScript in ReleaseUpdateTransformDB40_ and

ReleaseUpdateTransformDB50_ classes.

The following table describes the scripts that run on the target environment:

Script Description

Presynchronize Make metadata changes before the step to create tables. For example,

presynchronize scripts are used to map the database table or fields on the source

Microsoft Dynamics AX system to the database table or fields on the target

system. This table-to-table and column-to-column mapping prepares the source-

to-target upgrade model for data copy from source to target. Other kinds of

presynchronize scripts disable unique index in preparation for data upgrade and

avoid duplicate key error. This action is undone during the postsynchronize step.

The scripts that run are methods with an UpgradeScriptStageAttribute of PreSync.

They are specified in the in ReleaseUpdateDB401_, ReleaseUpdateDB41_ and

ReleaseUpdateDB60_ classes.

Postsync Contain the bulk of the data upgrade. Company-specific business data is

upgraded in postsynchronization upgrade scripts. Postsynchronization also

reverses the metadata changes that were made during the presynchronize step.

Final Implemented to run outside the core data upgrade. Thus reduces the upgrade

downtime for the core data upgrade. An example is upgrading metadata that is

related to AIF endpoints. The scripts that run are methods with an

UpgradeScriptStageAttribute of Additional, the scripts are specified in the

ReleaseUpdateDB401_, ReleaseUpdateDB41_ and ReleaseUpdateDB60_ classes.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

10

The following diagram illustrates a simplified view of the data upgrade process:

The following diagram is a sequence diagram of the data upgrade process that provides detail on

when each process occurs.

In the diagram, the sequence is specified with a alphanumeric value. For example, the events that are

labeled A, A1, A2 occur first, then B, B1, B2 and so on.

Source

Target

System is live

Single-
user

Live
scripts

Delta
scripts

Single-
user

scripts

Pre-sync
scripts

Post-
sync

scripts

Final
scripts

Online
again!

Bulk
copy

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

11

A. Source: AX4/AX2009 B. Target: Microsoft Dynamics AX 2012

A0. Customer imports XPO

into LIVE Microsoft Dynamics

AX 4 or Microsoft Dynamics

AX 2009 system

Batch 1

2.1. Pre-

processing of all

tables with

Dimension

Normalization

change

Batch 2

2.2. Pre-

procession of all

affected tables

with Address

Normalization

change

Batch 3

Start Batch execution

A3. Pre-processing of affected source

tables (Live system)

All pre-processing

done in a new tables

(no existing tables

altered yet), linked by

RefRecId with existing

tables if nessesaryA4. Backup and

shutdown of LIVE

Microsoft Dynamics

AX 4 or Microsoft

Dynamics AX 2009

system

Batch 1

2.1. Identify

updated records

for affected

source tables,

and run pre-

population script

for them

Batch 2 Batch 3

Start Batch execution

A5. Verification and delta processing

All pre-processing

done in a new tables

(no existing tables

altered yet), linked by

RefRecId with existing

tables if nessesary

B1.Run Pre-Sync

scripts (non-data-

related)

B2. CREATE

Table and Views

(part of sync)

B0. Deployment of

Microsoft

Dynamics AX

2012

Batch 1

B5a.1.Upgrade scheduling engine to

determine the order of the Bulk Copy

and Upgrade script task scheduling

Batch 2

Batch execution

B5a. Bulk Copy, Sync and Postsync of non-affected tables

B5a.2. Copy

Table 1 from

system A to

system B using

BCP Bulk Copy

B5a.3. Sync

Table 1

INDEXES,

Constraints

B5a.3.Copy

Table 2 from

system A to

system B using

BCP Bulk Copy

B5a.3.Sync

Table 2

INDEXES,

Constraints

Mark table

“ready for copy”

Mark table

“ready for copy”

Batch 1 Batch 2

B5b. Bulk Copy, Sync and Postsync of affected tables (e.g. tables with

pre-processing scripts)

B5b.2.Copy the

table using JOIN

from Source

table and

Shadow table

from system A to

system B using

Bulk Copy

B5b.3. Sync

Table 1

INDEXES,

Constraints

B5b.3. Sync

Table 2

INDEXES,

Constraints

 A table processed is affected table

(e.g.by Dimension/Address

normalization?)

Yes

B5b.0.

Check if table is set to be

“ready to be copied”

B6. Complete all

other Upgrade

checklist tasks

B5b.2.Copy the

table using JOIN

from Source

table and

Shadow table

from system A to

system B using

Bulk Copy

2.2. Identify new

inserted records

for affected

source tables,

remove

corresponding

shadow table

and run pre-

population script

for them

2.1. Identify

updated records

for affected

source tables,

and run pre-

population script

for them

2.2. Identify new

inserted records

for affected

source tables,

remove

corresponding

shadow table

and run pre-

population script

for them

A1. Discovery of source tables

and fields affected by Address/

Dimension transformations

A2. CREATE of shadow tables

B4. Run

prioritization

algorithm to

determine the

order of bulk copy

task

B5.1.Identify if all

dependent tables are

copied

B5.2.Identify if

all dependent

tables are

copied

The priority of the bulk copy tasks and upgrade script is determined based on an
algorithm to optimize the total upgrade down time window. Following algorithm
will be used:

1.For each script, calculate weight1 by summing the sizes of the tables the script
depends on
2.For each script, calculate weight2 by summing weight1 + weight1 of all its
immediate children
3.For each table, calculate its weight by summing weight2 of all its immediate
children

The top ‘n’ tables (based on actual table size) will be determined by weight,
and the top ‘n’ scripts will be determined by weight.

To determine the order of execution (the priority of each job), the jobs will be
scheduled by largest weight first – accounting for dependency.

B3. Generate

mapping for

Source to target

Tables. e.g. Table

1 (system A)-

>table1 (System

B)

 copy task

B5a.1.Upgrade scheduling engine to

determine the order of the Bulk Copy and

Upgrade script task scheduling

B5.1.Identify if all

dependent tables are

copied

B5.2.Identify if

all dependent

tables are

copied

Batch 4 Batch 5

B5.3. Execute

the upgrade

scripts

B5.3. Execute

the upgrade

scripts

Batch 4 Batch 5

B5.3. Execute

the upgrade

scripts

B5.3. Execute

the upgrade

scripts

Batch 3

Batch 3

Source Microsoft

Dynamics AX

Target Microsoft

Dynamics AX
Table mapping
issues are resolved
using presync scripts

A. Source is Microsoft

Dynamics AX 4 or Microsoft

Dynamics AX 2009

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

12

Implementation consideration for upgrade scripts

You will be implemeting upgrade scripts under the followng scenarios:

 Upgrading ISV solution: As an ISV developer you are responsible for upgrading your

ISV solution. That means you will be using upgrade framework to upgrade data

associated with ISV solution.

 Upgrading custom solution: Most Dynamics AX are customized to meet unique

customer requirements. These customizations are mostly done by partners or in

some case by customers. Data associated with these customizations also needs to be

upgraded and requires custom upgrade scripts.

The following list contains questions to ask when you develop upgrade scripts:

 When do I need to write upgrade scripts?

 What types of upgrade script do I need?

 How to implement these scripts?

 What’s the best practice to implement these scripts?

When is a Data Upgrade Script Needed?

The following list describes changes that require an upgrade script:

 Change the name of a field, when field ID is different

 Change the name of a table, when table ID is different

 Delete a table and save data

 Delete a field and save data

 Add or change unique indexes

 Change a non-unique index into a unique index

 Restructure where data is stored. For example, move data from one field to another

 Correct old data inconsistencies

 Populate new tables with existing data

 Populate new fields with existing data or a default value that is different from the default

value for the data type

When is a Data Upgrade Script Not Needed?

 There are changes that can be made in the data model without the need for an upgrade script. The

following list describes changes that can be made without an upgrade script:

 Change the name of a field, when field ID is the same

 Change the name of a table, when table ID is the same

 Add a field to a table with a default value for every field

 Add or change relations

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

13

 Add or change non-unique indexes

 Add or change delete actions

 Add or change/delete temporary table

What types of upgrade script do I need?

The first question is do I need source side or target side upgrade scripts. If source side scripts – do I

need Live & Delta scripts or Single user mode? If Target side scripts – so I need the Presyncronize or

Postsynchronize upgrade scripts. There are other questions – when should I implement upgrade

readiness scripts or should I conisder adding upgrade scripts as Additional scripts? This section will

provide with some guidance which will help you understand the various factors which determines the

answer.

How big or complex is the data change?

This is determined mainly by the size of the data (if you are an ISV - think about the worst case

scenario) or the complexity of the chnge in terms of the data model changes. For example, in

Dyanmics Ax 2012, Addresses are normailied. What used to be in custtable and various transaction

tables in previous version has been converted into the group of less than ten normalized tables. In

worst case, it means addresses were stored in around fifty or more tables and some of these address

were stored in large transaction tables, such as salestable, etc. If we would have taken a route to

upgrade this data on target system, then it would lead to a huge downtime due to the amount of data

being processed and the complexity of the scripts. Complexity in this case means writing code which

will go through all transaction tables and then building a normalized set of Address tables on a

Dynamics Ax 2012 system. This means huge upgrade downtime. Therefore, we choose a route of

building a Live and delta preprocessing upgrade scripts. There were smaller changes such as

upgrading address book, which can be accomplished quickly using a set based operations – and for

that we chose the postsynchronization upgrade scripts.

If the changes are complex and the data set which are impacted by these changes are large then you

should consider implementing Live preprocessing upgrade scripts. You can have a combination of Live

preprocessing, single user scripts and postsync scripts. Postsync scripts are appropriate where changes

are staright forward, changes can be easily implemented using the set based operations and the

expected impact on the total upgrade downtime is low.

Most important part of any upgrade script development is to minimize the upgrade downtime for the

customer. Therefore, it means upgrade scripts design should be implemented with performance in

mind. The development cost of implementing the preprocessing scripts are a little higher compared to

postsync scripts. Therefore, make sure that you analyze the design carefully while deciding the

approach to upgrade script implementation.

In summary, here are scenarios when you may need preprocessing scripts:

• Upgrade does not fit into the upgrade window

• Massive data updates

• Processing big transactional tables

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

14

Here are some of the implementation consideration and usage of various types of upgrade scripts.

Upgrade readiness scripts:

Upgrade readiness scripts are implemented to identify the following issues:

 Data quality issues which might fail your upgrade scripts: Upgrade scripts are written based on

certain assumption on valid data, like you don’t expect a duplicate for your unique index or certain

data constraints. If user is not aware of these data issues then upgrade scripts, either

Preprocessing scripts or Target side scripts would fail. In many cases it’s hard to know immediately

why the scripts are failing and needs some debugging. By identifying these conditions upfront,

the data upgrade process runs much smoothly, saving on valuable upgrade test cycles. In most

cases these scripts should be of type “Error” (upgrade readiness script type) – that means user

must fix these issues before proceeding with the upgrade.

 Unsupported scenarios: There may be scenarios which are unsupported. For example, you expect

to have the multisite enabled for all company accounts before data upgrade script can run. You

may also have scenario where certain functionality has been deprecated or if there is no out of the

box support for upgrade. For example, there is no automated reports upgrade (X++ reports) from

earlier version to Dynamics AX 2012 and therefore an upgrade advisory type readiness script

informs about it to the user. The intent is to make sure customer or partners upgrading their

system are aware of all issues which needs to be accounted and planned for upgrade. These

scripts can be of type Advisory or Error, depending upon the intent of the scripts. If you don’t

want the upgrade user to proceed with upgrade without fixing issues then it should be of type

“Error”. If the intent of the script is to just inform user, like, upgrade of X++ report is not

automated, then this can be defined as of upgrade script type “Advisory”.

 Best practice or required setup of the system: For running upgrade you may recommend certain

performance setup, like, Microsoft shipped an script which ask user to run a script which update

database statistics to improve the performance of upgrade or making sure source database has

the RCSI (read committed snapshot isolation) setting turned on.

 Upgrade readiness scripts should be designed to run multiple times. These scripts can potentially

be run on a Live production system. Note the performance of the script. Script in most cases will

only be doing a read from tables and populating the results in the log table.

Live and Delta preprocessing scripts:

Live upgrade scripts are designed to run on a Live Dynamics AX system (Source system) which is being

upgraded. These scripts are designed with following goals:

 Do row-by-row operations to minimize impact on the live production system

 No update or changes are ever made to the production data, all changes should happen in

staging tables, such as Shadow or dictionary tables.

 “While select” statement should be implemented with performance in mind, for example:

o Avoid complex joins in while select statements which may lead to database sorting

o “Where” condition within the statement should be based on primary or unique indexes

o “Order by” clause within the statement should contain the primary or unique index

o Design scripts to avoid any unnecessary round-trip to the database

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

15

o Use indexes on shadow table fields which are being used for joining with source table

o Use cache lookups on shadow tables

o Use field lists within select statements

 Script should use the upgrade throttling APIs to support pause/resume functionality

 Every Live script should have a corresponding Delta script

o Each Delta script is designed to identify the changes since the Live preprocessing. For

example, a not exist join on RecID and RecVersion column will identify the delta

changes.

o “While Select” best practice for Live scripts are applicable for Delta script too

 Virtual company consideration: Design scripts to support Virtual company or table

collection on the tables. Usually, the recommendation is to design the script with an

assumption to have the Shadow table for the script be part of the same table collection

as the source table (there is an Upgrade readiness script to identify this situation).

Supporting virtual company in this context will require implementing a “not exist”

condition within the “While select” loop to avoid reprocessing the rows which were

processed in the context of other shared company. Otherwise, script will fail with records

exist error.

 Configuration key consideration: make user to tie your upgrade scripts to appropriate

configuration key to prevent it from running if the corresponding feature is not installed.

Single user scripts:

Single user scripts are designed to be run during the upgrade downtime. Therefore, these scripts

should be implemented using the set base operations.

Preprocessing forms:

Preprocessing forms are required when you need user interaction to remove the data ambugity. Here

are some scenarios which explains when a preprocessing form should be implemented.

Scenario 1: Application Concept between Microsoft Dynamics Ax version has changed

For example:

Multisite activation: Multisite feature was introduced in Microsoft Dynamics AX 2009 and to upgrade a

Microsoft Dynamics Ax 4.0 to Microsoft Dynamics Ax 2012, a site structure needs to be predefined.

This predefined site structure is used during upgrade to correctly upgrade to multisite enabled system

on Microsoft Dynamics Ax 2012

Global address book: Organization of Addresses in Microsoft Dynamics Ax 2012 are drastically

changed. In earlier version addresses were part of the custtable and variou transactional tables which

stored the shipped, invoiced, or billed addresses. In Microsoft Dynamics AX 2012 all address are

consilidated into standard set of reference data for country name, address format, region, etc. It

means if there were three country defined as UK, England, Great Britain – all meaning the same

country but in new Microsoft Dynamics AX system it will be a set of ambigous data. A user needs to

correctly map these country to correct set of standard country.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

16

Scenario 2: Company based schema is changed to shared tables

In earlier version of Microsoft Dynamics Ax most tables and concepts were bound by DataAreaID, i.e.

company construct was associated with each concept within the table structure. In Microsoft Dynamics

Ax 2012, most table structure are changed to shared table concept. It means data which were unique

within a context of a single company may have duplicates if merged with all the company accounts.

For example: Map items to products, define units of measure. These forms identify the duplicates and

recommend ways to fix these duplicates so correctly merge the data.

Consideration for moving company specfic data to shared data:

Here are some of the things that have to be considered when data from company specific tables,

meaning tables with the SaveDataPerCompany = yes are upgraded to new Shared tables, meaning

tables with SaveDataPerCompany = No.

The most common issue is that the data cannot be merged automatically because N records have to

result in 1 record. This means that the user will have to map company specific records to new shared

records.

Example – create products based on inventtable records

ItemId should be copied to productNumber and name to productName

ItemID Name DataAreaId

A My a Dmo

A M a with different name Ext

In the above the two items could be merged if name was not copied, but since name is copied,

determine which name to use or if the items actually should be considered the same. If they cannot,

the user needs to provide a new product number for one of them and tell which item should map to

what product. This is where a form is created which shows the duplicates and then provide a way to

map this correctly using options such as, map by ID, map 1 to 1, etc.

How do you show the data from all the companies to the user so he can make decisions on the

merging and input values?

In Microsoft Dynamics AX 4.0 you did not have crossCompany support. That means that if you want to

work on the data from different companies in some ordered way, you have to create shared tables

where you copy all the company specific data. These tables can also provide the functionality to enter

new values or choose mappings.

During the Microsoft Dynamics Ax 2012 upgrade scripts you could be using these shared DEL_ tables

to select from and insert into your new shared Microsoft Dynamics Ax 2012 tables. Consider

performance and de-normalized DEL_ tables to make the upgrade script as fast as possible.

In order to get your form to show up in the upgrade preprocessing checklist you need to create a

class that extends SysCheckList and add it into the SysCheckList.checkListItems() method.

Merging/Mapping algorithms

If you are merging data and the user should provide input to resolve merge conflicts or do other

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

17

mappings you most likely need a form, were this can be inputted. But consider the size of the data

you are working with. If there is lot of records you most likely need to consider adding some defaults

mapping algorithms like:

1. Map all records to a new unique record (here you are not merging anything)

2. Map all records with the same natural key , e.g. all items with same item ID

Validating mappings

Most likely you need to provide some validation of the mappings that have been done. Examples

could be that items with color dimension active cannot be mapped to the same product as items

without color dimension active.

Depending on how much data there is, you might output these validations in different formats. For

the dimension group upgrade an X++ report was chosen and for the product upgrade a whole error

logging form and system was developed. It will depend on how much data you expect and how

complicated the mapping is. For something like items there can be millions of records, hence it cannot

be expected that customers correct all issues in one go and manually one-by-one.

Validating changes to data

Once the customer has finished your upgrade step and provided the data you need, data can still

change. New records may be added, others deleted and some changed. That means that you will have

to take this into consideration. Most likely you need to create a delta-script that detects such cases.

A word on virtual companies

If a table is shared between 3 companies there will only be one set of records for that table and they

have the dataareaid = virtual companies dataareaid. So if there is a chance your tables are shared you

should consider what you present to the user when asking him to map and merge. Do you show one

record for each actual company or only the one for the virtual company? Experience has shown that

writing the actual Microsoft Dynamics Ax 2012 upgrade scripts are easiest if you use the virtual

dataareaid but if you have several tables with a mix of non-virtual and virtual you might need to be

extra careful when writing your joins on your preprocessing shared tables.

Performance

Reember, these forms are run when Dyanmics Ax system is Live in production. So make sure query

used to populate the form or map the data is written appropriately to have the minimum impact on

the Dyanmics AX system.

Attribute based upgrade framework (target side scripts only):

Note: This section is only applicable for target side scripts, i.e. the scripts

implemented on Dynamics Ax 2012 code base. The preprocessing upgrade scripts on

the source system still use the API-based model.

Earlier version of upgrade framework has an API based upgrade script definition, such initpresync,

initpostsync, etc. It required implementing the definition and body of the script separately. It was also

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

18

very challenging to write any kind of tool which can do the dependency anlaysis for missing upgrade

script dependency or redundant dependecy between scripts.

The new upgrade framework in Dynamics Ax 2012 uses X++ attributes to define the upgrade scripts.

This architecture simplifies coding upgrade scripts, reduces the possibility of bugs, improves

supportability, and makes extending the upgrade framework easier. The biggest advantage of this

feature is that users can run a dependency analyzer tool to optimize the upgrade script dependencies.

Here are some of the salient feature of the new framework:

 Upgrade framework uses attributes values to schedule the scripts correctly

 Equivalent upgrade attributes are defined for all upgrade script parameters, which

used to required API calls in earlier version

 A dependency analyzer tool is created that analyzes the upgrade attributes to

determine script dependencies (Dependency analyzer tool is available through the

Upgrade cockpit General tab.)

API based upgrade framework is deprecated and only used for backward compatability to support two

version upgrade. All new upgrade scripts on Dyanmics AX 2012 should use new attribute based

model. API based upgrade framework will be removed in future versions.

Presynchronization scripts:

Presynchronization scripts in earlier version were mainly implemented for metadata changes which

required disabling unique indexes to avoid duplicates. Microsoft Dynamics AX 2012 has included the

concept of a Source to Target model. Data from the Source system is copied to the target system. To

do this, the upgrade framework uses an algorithem to map the source tables to corresponding target

tables.

Fixing table/field mapping errors:

The mapping algorithm follows the following precedence:

1. Check special mapping – this is custom mappiong as defined within presynchronize scripts

2. Try to map by name, e.g. SalesLine -> SalesLine (Salesline table exist on both source and target

system)

3. Try map by DEL_ prefix, e.g. SalesLine -> DEL_SalesLine (salesline table on traget doesn’t exist but

DEL_Salesline table exists)

4. Try to map by ID (Salesline or DEL_salesline table on target doesn’t exist but the ID of the Salesline

table on source and target is same)

5. Otherwise, mapping error is reported and must be fixed!

The following list describes common mapping errors when you launch the table and field mapping

form from the data upgrade checklist.

 Target table is not empty: If target table is not empty then the source table is not copied to

target.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

19

 Table name is not matched: target table doesn’t have the corresponding source table.

 Field name is not matched: Some fields on source and target and not matched. Even if there is

a single field mismatch between tables, the whole table is not copied over unless the mapping

issue is fixed.

 Field name in the shadow table does not match: Shadow table is joined with the

corresponding source table during bulk copy and data inserted within the mapped target

table. If the source table field used within the shadow table doesn’t match with target then

table is shown as a mapping error.

 Field data type changed: If the field type has changed or if the field length is different, it is

considered a mapping error. Many times, an EDT difference between the source and target

system may lead to this issue. The simple fix is to make the EDT definition the same.

The following list describes Presynchronize script implementation considerations:

 Write pre-synchronization scripts to provide special mapping.

 If necessary, write data transformation scripts, like postsynchronize scripts. In some cases

you may need to write or alter the source side preprocessing scripts.

 Remember that pre-synchronization scripts are running on EMPTY database.

 Don’t use pre-synchronization scripts to update the data.

 Use pre-synchronization scripts to change metadata or register table or field mappings.

 Provide configuration keys.

 Use attribute-based models.

Postsynchronization scripts:

The following list describes the purpose for Postsynchronization scripts:

 Executed when the data is copied over from the source system.

 Performs final data transformation.

 Re-enables unique indexes if disabled by pre-synchronization scripts.

The following list describes implementation considerations:

 Use an attribute-based model.

 Use set-based operations to speed up performance.

 Provide UpgradeScriptTableAttribute attribute for all tables used (even for

ReleaseUpdateDB41 class & ReleaseUpdateDB401 class to support two version upgrade). This

is a special attribute which tells the upgrade framework if the create, read, update, or delete

operations happen on the tables being used within the script. If this attribute is missing, the

postsynchronize script may run before the data for this particular table is copied over to the

target table.

 Provide configuration keys.

 Provide script dependencies.

 Watch out for parallelism and race conditions.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

20

The Preprocess Upgrade Checklist (souce environment)

The preprocess upgrade checklist is a navigation pane that guides you through the preprocess data

upgrade steps in the source environment. Use the following steps to access the preprocess upgrade

checklist.

1. Import the preprocess XPO into the source environment. The XPOs are located in the

retail\CD\DatabaseUpgrade directory on the setup CD-ROM.

2. Open the checklist manually. Navigate to the SysCheckList_PreUpgrade40/50 menu item.

Data upgrade is performed using the preprocess upgrade checklist in the following order:

1. Prepare for upgrade

2. Prepare application data for preprocessing

3. Preprocess data on live system

4. Preprocess data in single user mode

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

21

The following screenshot illustrates the preprocess upgrade checklist:

Figure 1. The preprocessing upgrade checklist

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

22

The Upgrade Checklist (target environment)

The upgrade checklist is a navigation pane that guides you through the data upgrade steps in the

Microsoft Dynamics AX 2012 target environment. It is invoked automatically when

Microsoft Dynamics AX starts after a service pack or major release is installed. Data upgrade is

performed using the Upgrade Checklist in the following order:

1. Presynchronize

2. Postsynchronize

3. Upgrade additional features

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

23

The following screenshot illustrates the upgrade checklist:

Figure 2. The upgrade checklist

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

24

How to Add New Items to the Upgrade Checklist

This section describes how to add new items to the upgrade checklist. You will create a class that

extends the SysCheckListItem class. Use the following steps to add an item to the upgrade checklist.

Create a new class that extends the SysCheckListItem class and implements the

SysCheckListInterfaceUpgrade class. Name the class with the SysCheckListItem_<name> format

where <name> is a unique name.

Override the getCheckListGroup method and return the name of the group that the checklist item

should appear in.

For example, Upgrade preparation. You may use an existing group name or create a new group.

Nested groups can be created by using the GroupName\SubGroupName format.

All checklist items must belong to a group. Create a new action menu item and name the menu action

item the same as the class created in Step 1. Set the following properties:

Label: The text that should appear in the checklist for the item

HelpText: The help text that should appear below the checklist item text

ObjecType: Class

Object: Select the name of the class created in Step 1

SecurityKey: AdminSetup

In the class, override the getHelpLink method and provide a link to a .chm topic.

The following code illustrates an example of providing a link to a .chm topic:

#define.TopicId(‘AxShared.chm::/html/7b533e0b-f64d-410e-99ae-0296ace-50900.htm’)

return SysCheckListItem::sharedGuide(#TopicId);

1. Override the getMenuItemName method and return the name of the action menu item created

in Step 3.

2. Override the getMenuItemType method and return the type of the action menu item created in

Step 3.

The following code illustrates an example of returning an action menu item:

return MenuItemType::Action;

3. If necessary, override the isRunnable method. Determine what conditions the checklist item

should appear in the checklist. Return True to show the checklist item, or return False to hide it.

4. Override the new method. Specify where your item should appear in the checklist and what other

checklist items your checklist item depends on.

a) Call this.placeAfter to specify the order of your checklist item.

The following code example illustrates the checklist item placed after the Detect code

upgrade conflicts checklist item.

this.placeAfter(classnum(SysCheckListItem_SysUpgradeDetectCon));

b) Call this.addDependency to specify which checklist items your checklist item depends on.

The following code example illustrates the checklist item depends on the Set current time

zone checklist item. The Set current time zone checklist item must be completed before this

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

25

checklist item is enabled.

this.addDependency(classnum(SysCheckListItem_BaseTimezoneUpgrade));

5. Override the main method. This is the method that is executed when the checklist item is clicked

in the checklist.

6. In class SysCheckList, add an entry corresponding to your checklist item to the list in method

checkListItems. The list contains all the possible checklist items. Add your entry in the correct

order in which it should appear in the list.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

26

The Data Upgrade Framework for the Source Environment

The data upgrade framework for the source environment gives developers the infrastructure to insert

data upgrade scripts written in X++ to be executed in the source environment before the actual

upgrade in Microsoft Dynamics AX 2010 starts.

Framework and application scripts are shipped as a separate XPO file which customers have to

manually import into their live Microsoft Dynamics AX 4.0 or Microsoft Dynamics AX 2009

environment before the upgrade process starts.

All source preprocessing scripts must be derived from the ReleaseUpdateTransformDB class.

Defining transformation and preprocessing scripts

Before writing upgrade scripts, you must define transformation. Transformation and preprocessing

on the source environment are used when the upgrade impact of a change is major, and using usual

post-syncronize upgrade script in the target environment is not an option for performance reasons.

By defining transformation, you provide:

 the framework that the tables are going to use

 the additional tables that the framework needs to create in the source system

 the scripts to run in the source environment

Later, that information will be used when the upgrade framework copies the data to the target system.

You cannot change any existing tables or any data in the existing source system. The only tables in the

source environment which you can insert records into are “shadow tables” created by the framework

or the “dictionary tables” backported from Microsoft Dynamics AX 2010.

The following lists the required steps to define transformation for each version, Microsoft Dynamics

AX 4 and Microsoft Dynamics AX 2009:

a) Import the preprocessing upgrade framework XPO file (from the installation CD) into the

Microsoft Dynamics AX 4 and Microsoft Dynamics AX 2009 development environments.

b) Create a class derived from ReleaseUpdateTransformDB, or modify the existing class. For each

version, a set of classes exists - one upgrade class per module. They are named

ReleaseUpdateTransformDB<version>_<module>, for example

ReleaseUpdateTransformDB41_Bank.

c) Create or modify the initTransformationJobs method. Add the definition of the new

transformation.

d) Export your new class and all nessesary tables into the standalone XPO file.

To define a valid transformation, you have to do the following:

1. Create transformation

ReleaseUpdateTransformDB.New()

 ReleaseUpdateTransformDB transformation = new ReleaseUpdateTransformDB();

Instantiate a new Table Transformation class object

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

27

2. Define source table

 Hardcode the source table names (which may require end customers to update that code

to fit their customizations) or

 Create automated discovery based on their business rules, for example find all fields with

certain EDT or relationships.

void ReleaseUpdateTransformDB.SetSourceTable(Tablename _sourceTablename)

Description: Register transformation class for specific source affected table.

Example:

 transformation.SetSourceTable(tablestr(LedgerTable));

3. Define source fields

void ReleaseUpdateTransformDB.addSourceField(identifiername _fieldName)

Description: Registers a field on the source affected table to be used for transformation. By registering

field a source, user tells upgrade framework NOT to copy that field from the source database, but

copy a fields registered as target field from the shadow table instead

Example:

 transformation.addSourceField(fieldstr(LedgerTable, AccountNum));

4. Define Shadow table

Shadow tables should be included in the preprocessing XPO files so they can be created during the

XPO import.

5. Define target fields

void ReleaseUpdateTransformDB.addTargetField(extendedtypeId _typeId, identifiername

_fieldName)

Description: Registers a field on the target affected table to be used for transformation. That field will

be automatically created in the shadow table with TypeID and FieldName provided by the user. Later,

when processing BULK COPY of the data from source environment to target, this field will be

automatically copied to the target affected table from the shadow table

Example:

 transformation.addTargetField(typeid(Description), 'NewAccountNum');

6. Per Company To Global Table

If your table is global in Microsoft Dynamics AX 2012 but per company in the previous version, you

need to follow these steps:

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

28

 Call the API SetPercompanyToGlobal. For example, in the

ReleaseUpdateTransformDB50_Basic.

initTransformationJobs():transformation_DirPartyTable.SetPerCompanyToGlobal(NoYe

s::Yes);SaveDataPerCompany is set to No in the shadow table

 Create a field name Shadow_DataAreaID in the shadow table which should be

populated with the old DataAreaId of the previous main table record.

o Add a relation from the shadow or dictionary table to the main table on

Shadow_DataAreaId and RefRecId fields.

 Implement the logic to copy data from the source table to the shadow table as

appropriate

7. Schedule preprocess scripts

 Data upgrade scripts in the source environment are executed in Microsoft Dynamics

AX 4.0 and Microsoft Dynamics AX 2009 environments. You have to create a separate

version of your script for Microsoft Dynamics AX 4.0 and Microsoft Dynamics AX 2009

upgrades.

 Application teams can provide four kinds of scripts for process their transformation,

which have to be scheduled in the initTransformationJobs method.

 Scripts called when the source system is live will result in live preprocessing. These

scripts must be written using row-by-row operations.

 Scripts which will be called when system is in the single user mode, but also

optionally can be run by a user when the system is live = Delta processing Scripts

called when the source system is only in Single User mode = Single User

Preprocessing. These scripts must be written as set-based operations.

 Scripts called in a test environment to validate to identify upgrade readiness and data

validation issues for data upgrade process. These scripts can be run in a Test Run

mode which can be scheduled by clicking on the first item in the preprocessing

checklist.

void ReleaseUpdateTransformDB.SetLivePreProcessingScript(ClassId _scriptClassId,

identifiername _scriptName, ReleaseUpdateScriptType _scriptType =

ReleaseUpdateScriptType::SharedScript, container _configKeys = connull(), boolean

_requiresXact = true)

Description: Register preprocessing script template (for the LIVE environment) to be used for the

transformation.

Example:

 transformation.SetLivePreProcessingScript(classidget(this), methodstr(ReleaseUpdateTransformDB50_Invent,

checkAndPreparePreUpgrade));

void ReleaseUpdateTransformDB.SetDeltaPreProcessingScript(ClassId _scriptClassId,

identifiername _scriptName, ReleaseUpdateScriptType _scriptType =

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

29

ReleaseUpdateScriptType::SharedScript, container _configKeys = connull(), boolean

_requiresXact = true)

Description: Register preprocessing script template (for the Singe User Mode and optionally for LIVE

environment) to be used for the transformation.

Example:

 transformation.SetDeltaPreProcessingScript(classidget(this), methodstr(ReleaseUpdateTransformDB50_Invent,

checkPreUpgrade));

void ReleaseUpdateTransformDB.SetSingleUserPreProcessingScript(ClassId _scriptClassId,

identifiername _scriptName, ReleaseUpdateScriptType _scriptType =

ReleaseUpdateScriptType::SharedScript, container _configKeys = connull(), boolean

_requiresXact = true)

Description: Register preprocessing script template (for the Singe User Mode environment) to be used

for the transformation.

Example:

 transformation.SetSingleUserPreProcessingScript(classidget(this), methodstr(ReleaseUpdateTransformDB50_Invent,

checkPreUpgrade));

void ReleaseUpdateTransformDB.SetValidationPreProcessingScript(ClassId _scriptClassId,

identifiername _scriptName, ReleaseUpdateScriptType _scriptType =

ReleaseUpdateScriptType::SharedScript, container _configKeys = connull(), boolean

_requiresXact = true)

Description: Register preprocessing script template (for the Live validation environment) to be used

for validation. Validation scripts are only run in a test environment and not in a production

environment. See the section Logging Data Issues in Validation Scripts for more information about this

script type.

 transformation.SetValidationPreProcessingScript(classidget(this), methodstr(ReleaseUpdateTransformDB50_Invent,

validatePreUpgrade));

8. Save transformation

Save()

Description: Saves the transformation

Example:

TableTransformation.save ();

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

30

9. Define dependencies between transformations

static void addTransformDependency(RefRecId _firstId, RefRecId _thenId)

Description: Adds dependency between transformations.

Example:

ReleaseUpdateTransformDB::addTransformDependency(Transformation1. getTransformationId(),Transformation2.
getTransformationId());

static void addTransformDependencyByTable(tableId _tableId, RefRecId _thenId)

Description: Adds dependency between one transformation and all other transformations that affect

the specified table, including transformations from other modules; i.e. ‘cross module’. These

dependencies are resolved in ReleaseUpdateTransformDB::initJobs.

Example:

ReleaseUpdateTransformDB::addTransformDependencyByTable(tablenum(<table>),Transformation2.
getTransformationId());

The first parameter is the source table of the tranformation, not the shadow table.

static void addTransformDependencyByMethod(classId _classId, IdentifierName

_methodName, RefRecId _thenId)

Description: Adds dependency between one transformation and another transformation by

class/method. This allows ‘cross module’ transformation dependencies to be defined. These

dependencies are resolved in ReleaseUpdateTransformDB::initJobs.

Example:

ReleaseUpdateTransformDB::addTransformDependencyByMethod(classnum(<class>), <methodName>,Transformation2.
getTransformationId());

10. Supporting Pause/Resume Functionality and Committing Data in Batches

During an upgrade you may want to pause an upgrade script and later resume the script from where

it left off. In addition, you may want to improve performance by committing processed data in

batches. The Upgrade Preprocessing Framework has API support for these scenarios. This is called

script throttling. In most cases, live preprocessing scripts should be implemented with throttling.

The ReleaseUpdateTransactionManager class implements the following methods that support script

throttling.

When calling the Set* methods in initTransformationJobs to register your upgrade scripts, be sure to

set the requiresXact flag to false.

Example:

SetLivePreProcessingScript(_classnum(ReleaseUpdateTransformDB_Admin),

methodstr(ReleaseUpdateTransformDB_Admin, myScriptName,

ReleaseUpdateScriptType::SharedScript, connull(), false);

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

31

ReleaseUpdateTransactionManager::newTransactionManager(classId _upgradeScriptClassId,

identifierName _upgradeScriptMethodName, identifierName _helperMethodName = ‘’,

freeText _blockId = ‘’)

Description: Creates a new instance of the transaction manager and associates it with your upgrade

script. An optional helper method name and block ID can be specified for multiple code blocks. The

_blockId can be any value that is appropriate for your situation.

When you use multiple instances of ReleaseUpdateTransactionManager in your upgrade script, if one

instance receives a pause command be sure to properly exit the upgrade script. Do not allow the

script to continue. ReleaseUpdateTransactionManager::newTransactionManager will throw an

exception if it detects another instance was paused. See the example below.

bool initialize()

Description: Initializes the transaction manager. Returns ‘true’ if the script is in resume mode.

validateTransaction(container _controlData)

Description: Call this method at the beginning of the while select loop in the upgrade script. The

method determines if a ttsbegin is needed. For Microsoft Dynamics 2009, the ttsbegin and matching

ttscommit must be within the same code block. This method accounts for that limitation.

container geLasttIterationState

Description: Returns information that the script uses to determine at what point it should resume. In

most cases, this can be the last RecId processed by the script, but can be any set of values that make

sense for your situation (control data).

boolean doIterationAndContinue(container _controlData)

Description: Call at the end of the while select loop in the upgrade script. The method keeps track of

how many iterations the while select has processed and automatically performs a ttscommit and

ttsbegin when the iteration limit has been reached. For example, if a script should process batches in

rows of 10,000, this method will count the rows, then commit when it reaches 10,000. The method

returns false if the script has been paused by the user. Your script should ‘break’ at this point.

The pattern for Delta scripts is different. In the following example, the RecVersion was added to the

Order By clause because Order By does not work with RecId due to a bug in Microsoft Dynamics AX.

The following code is an example of using the throttling API in a Live script:

public void throttlingAPITest()

{

 testTableSource srcTable;

 testTable2Source srcTable2;

 testTableShadow shadowTable;

 RefRecId lastRecId;

 boolean isResuming;

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

32

 ReleaseUpdateTransactionManager transactionManager1;

 ReleaseUpdateTransactionManager transactionmanager2;

 ;

 // Do not delete_from the shadow table here

 // Create a new instance of the transaction manager

 transactionManager1 =

ReleaseUpdateTransactionManager::newTransactionManager(classidget(this),

 methodstr(ReleaseUpdateTransformDBTest, throttlingAPITest), ‘’, ‘1’);

 // Determine if this script is resuming from a previous pause

 isResuming = transactionManager1.initialize();

 // Retrieve the last RecId processed

 [lastRecId] = transactionManager1.getLastIterationState();

 while select *

 from srcTable

 order by RecId, RecVersion

 where (other conditions) && (srcTable.RecId > lastRecId || !isResuming) // Understand your script

logic and implement accordingly – don not copy and paste as this example uses RecId to track the last

processed row. Your scenario may vary.

 {

 // validateTransaction will start the transaction, if needed

 transactionManager1.validateTransaction([srcTable.RecId]);

 shadowTable.clear();

 shadowTable.Name = srcTable.Name;

 shadowTable.insert();

 // doIterationAndContinue checks if a commit should be performed

 if (!transactionManager1.doIterationAndContinue([srcTable.RecId]))

 {

 // If doIterationAndContinue returns false, exit

 return;

 }

 }

 // Complete the final transaction

 transactionManager1.endTransaction([srcTable.RecId]);

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

33

 // Create a new instance of the transaction manager for loop 2

 transactionManager2 =

ReleaseUpdateTransactionManager::newTransactionManager(classidget(this),

 methodstr(ReleaseUpdateTransformDBTest, throttlingAPITest), ‘’, ‘2’);

 // Determine if this script is resuming from a previous pause

 isResuming = transactionManager2.initialize();

 // Retrieve the last RecId processed

 [lastRecId] = transactionManager2.getLastIterationState();

 while select *

 from srcTable2

 order by RecId, RecVersion

 where (srcTable.RecId > lastRecId) || !isResuming

 {

 // validateTransaction will start the transaction, if needed

 transactionManager2.validateTransaction([srcTable2.RecId]);

 shadowTable.clear();

 shadowTable.Name2 = srcTable2.Name;

 shadowTable.insert();

 // doIterationAndContinue checks if a commit should be performed

 if (!transactionManager2.doIterationAndContinue([srcTabl2e.RecId]))

 {

 // If doIterationAndContinue returns false, exit

 return;

 }

 }

 // Complete the final transaction

 transactionManager2.endTransaction([srcTable2.RecId]);

}

The RecID might not be unique, select a combination of fields to track the processed rows in

your query. For example, with non-shared tables, DataAreaID might be used in your query

condition:

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

34

while select crosscompany AddressCounty order by DataAreaId, RecId, RecVersion

where (other conditions) && ((AddressCounty.DataAreaId > lastDataAreaId ||

(AddressCounty.RecId > lastRecId && AddressCounty.DataAreaId == lastDataAreaId)) ||

!isResuming)

In this case, DataAreaId should be an additional input/output when calling the throttling

APIs, for example:

…

[lastRecId, lastDataAreaId] = transactionManager.getLastIterationState();

…

if (!transactionManager.doIterationAndContinue([AddressCounty.RecId,

AddressCounty.DataAreaId]))

…

DataAreaId is used for a shared script only. For a standard script, which runs per company,

DataAreaId is redundant in the above query.

Example of API use in a Delta script:

isResuming = transactionManager.initialize();//isResuming might not be used but initialize() should be

called.

delete_from shadow_InventCostTrans

notexists join RecId, recVersion from InventCostTrans

where InventCostTrans.RecId == shadow_InventCostTrans.RefRecId &&

 InventCostTrans.recVersion == shadow_InventCostTrans.RecVersionId;

while select RecId, recVersion, Dimension from InventCostTrans

order by InventCostTrans.RecId, InventCostTrans.recVersion

notexists join shadow_InventCostTrans

where InventCostTrans.RecId == shadow_InventCostTrans.RefRecId &&

 InventCostTrans.recVersion == shadow_InventCostTrans.RecVersionId &&

 ((InventCostTrans.RecId > lastRecId) || !isResuming) Do not add a where clause for checking

last recid processed here. Deltas may have occurred in rows prior to this. The not exists join takes care

of this.

{

 // validateTransaction will start the transaction, if needed

 transactionManager.validateTransaction([InventCostTrans.RecId]);

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

35

 shadow_InventCostTrans.RefRecId = InventCostTrans.RecId;

 shadow_InventCostTrans.RecVersionId = InventCostTrans.recVersion;

 shadow_InventCostTrans.DefaultDimension =

DimensionConversionHelper::getNativeDefaultDimension(InventCostTrans.Dimension);

 shadow_InventCostTrans.insert();

 // doIterationAndContinue checks if a commit should be performed

 if (!transactionManager.doIterationAndContinue([InventCostTrans.RecId]))

 {

 // If doIterationAndContinue returns false, exit

 return;

 }

}

// Complete the final transaction

transactionManager.endTransaction([InventCostTrans.RecId]);

11. Logging Data Issues in Validation Scripts

Validation scripts in preprocessing have a unique feature that allows them to identify data issues

discovered and alert the user. The script can rely on the framework to present these issues to the user,

and can optionally provide a custom UI to display or fix these issues. To provide these features,

validation scripts can use the following API:

ReleaseUpdateValidationLogger

ReleaseUpdateValidationMessages (macros)

log(ReleaseUpdateMessageId _messageId, ReleaseUpdateLogResultType _logResult, freeText

_messageText, freeText _resolution, SysInfoAction _action = null, ReleaseUpdateActionType

_actionType = ReleaseUpdateActionType::None)

logDetail(ReleaseUpdateMessageId _messageId, freeText _message)

ReleaseUpdateValidationLogger::newValidationLogger(classId _upgradeScriptClassId,

identifierName _upgradeScriptMethodName)

Description: Creates a new instance of the validation logger and associates it with your upgrade script.

log(ReleaseUpdateMessageId _messageId, ReleaseUpdateLogResultType _logResult, freeText

_messageText, freeText _resolution, SysInfoAction _action = null, ReleaseUpdateActionType

_actionType = ReleaseUpdateActionType::None)

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

36

Description: Logs a unique message. The message is tracked by _messageId (entered in

ReleaseUpdateValidationMessages) and only logged once per script, even if the log message is called

multiple times with the same messageId.

logDetail(ReleaseUpdateMessageId _messageId, freeText _message)

Description:Logs a detail message associated with a previously logged messageId (log).

The following is an example of a log entry and its corresponding detail:

Log: There are invalid states in table x

Detail: Row with RecId 1 has invalid state ‘Wash’

 Row with RecId 2 has invalid state ‘Mass’

Row with RecId 100 has invalid state ‘Fla’

The following is an example of a script using the validation APIs:

#ReleaseUpdateMessageIds

MyAddresses myAddresses;

SysInfoAction_ValidationForm action;

ReleaseUpdateLoggerInterface logger;

;

action = new SysInfoAction_ValidationForm::newFormname(formstr(MyAddressesResolveState));

logger = ReleaseUpdateValidationLogger::newValidationLogger(

 classidget(this),

 methodstr(ReleaseUpdateTransformDB41_Admin,

 validateMyAddresses));

while select *

 from myAddresses

{

 if (!this.IsValidState(myAddresses.State))

 {

 logger.log(

 #myAddressesStateInvalid, // MessageId

 ReleaseUpdateLogResult::Error, // Type

 "The following rows have invalid states:", // Message Text

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

37

 "Update these rows to use valid states.", // Resolution

 action, // SysInfoAction

 ReleaseUpdateActionType::Fix) // ReleaseUpdateActionType

 logger.logDetail(

 #myAddressesStateInvalid,

 strFmt("RecId: %1 (%2)",

 myAddresses.RecId,

 myAddresses.State))

 }

}

12. Modify a subset of records in a table during upgrade

Using the upgrade framework, you can upgrade a subset of records in a table while keeping the rest

unchanged.

For example, the MarkupTrans table has the Keep field which should only be changed for a subset of

records.

The recommended solution is to write the upgrade scripts as if the field should be upgraded for the

entire table.

The difference is that the select statement in the upgrade scripts should have a where clause to

indicate that only records that should be upgraded are selected. Shadow records are then created for

the records that should be upgraded.

When registering the upgrade script in the transformation, it should set the shadow table join type to

be left outer join:

transformation.setShadowTableJoinType(ReleaseUpdateJoin::LeftOuterJoin);

During bulk copy, the framework will then automatically set the upgraded field to the upgraded value

if one exists otherwise it will keep the original value for the field.

This approach assumes that the fields on a record which determine whether it should have a record in

the shadow table cannot change in the source environment. Otherwise, it is a challenge to identify

modified records.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

38

Writing Data Upgrade Scripts for Source Environment

This section contains information on writing Live preprocessing scripts and writing Delta and single

user mode preprocessing scripts.

Writing Live preprocessing scripts

Preprocessing scriptsc can Direct SQL or X++ application scripts executed from within AX by the

framework:

Tables imported in XPO

from AX6Source LIVE environment

Source “affected”

table

(LedgerTable)

Shadow Table

(LedgerTable_

Dimension)

NEW

Dictionary table

(NewDimension)

Source “non-

affected” table

Target “affected”

table

(LedgerTable)

NEW

Dictionary table

(NewDimension)

Target “non-

affected” table

Source AX4/AX5 environment

Target AX6 environment

Pre-

processing

 RECID Link

Scripts must correctly accept source affected table names and field names, and respective shadow

table name, and perform necessary transformation of data from source tables/fields:

1. Records in new tables: should be created directly in the new “dictionary” table

(for example, NewDimension table) which was imported from target system into

the source system

2. Modified fields of the existing “source” table: saved in a “shadow” table, linked

with the source table using RecId and RecVersionId link

preUpgradeScript(SourceTableName, SourceFieldNames[], ShadowTableName, ShadowFieldNames[])

{

// application logic goes here

//insert into new dictionary tables

WHILE SELECT FROM SourceTableName

{

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

39

// Check if record exist in Dictionary Table1

SELECT FROM Dictionary Table1 where <some condition based on SourceTableName >

// IF it does not exist, insert it

INSERT INTO DictionaryTable1 <some fields from SourceTableName>

// Check if record exist in Dictionary Table2

SELECT FROM Dictionary Table2 where <some condition based on SourceTableName >

// IF it does not exist, insert it

INSERT INTO DictionaryTable2 <some fields from SourceTableName>

// insert into “shadow table” modified source fields link to the Dictionary tables and

// RecId/RecVersionId link to the source table

S = INSERT INTO ShadowTableName

(REFRECID, REFDATAAREAID, RECVERSIONID, shadowFieldName[1], shadowFieldName[2])

SourceTableName.RECID,

SourceTableName.DATAAREAID,

SourceTableName.RECVERSIONID

DictionaryTable1.targetField1,

DictionaryTable2.targetField2

 executeStatement(S);

}

}

If direct SQL is used, then two versions of the script has to be implemented, Oracle and MS SQL.

Writing Delta and single user mode preprocessing scripts

 Purpose of these scripts is to check the state of the source tables since preprocessing script was run

on the LIVE system, and resolve all discrepancies occurred since.

These will be Direct SQL or application scripts executed from within AX by the framework. It’ll be

script’s responsibility to identify new or modified records in the source table and take appropriate

actions (for example, rerun the business logic for new records). However, framework will provide some

guidance on this, for example:

There are 3 types of changes which may have happened to a record

1. How to identify new records

Script can identify new records by using shadow table RefRecIds.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

40

For instance,

SELECT SourceTable.RecIDs NOT EXIST ShadowTable.RefRecId

If such record was found, we can execute preprocessing script on it

2. Record updated

Script can find updated records using RecVersion field. A search like provided below can be used:

SELECT SourceTable, ShadowTable where SourceTable.RECID = TargetTable.RECID and SourceTable.RecVersion !=

ShadowTable.RecVersion

If such record was found, we will delete the record from shadow table and re-run preUpgradeScript()

on it. However, that approach may leave some orphan records in the “dictionary” tables. Also,

RecVersion may not be very reliable due to third party components writing directly to the database

3. Record deleted

Script can identify new records by using shadow table RefRecIds, but usually there is no need no need

as later we will be joining Shadow table and Source table on RecID (see section 4). However, orphan

records may be left in the “dictionary” tables

As soon as table’s delta processing completed for all transformations, the table must be marked as

ready to be copied

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

41

The Data Upgrade Framework for the Target Environment

The data upgrade framework gives developers the infrastructure to insert data upgrade scripts written

in X++. The data upgrade framework manages the dependencies of the scripts, schedules them to be

run in parallel by batch clients, and provides progress reports on the running scripts. The data

upgrade framework has a built-in error recovery mechanism that helps to ensure system integrity

when the upgrade has to be resumed after an error.

With the exception of the base ReleaseUpdateDB class, the ReleaseUpdateDB* classes contain

implementations of data upgrade scripts. The scripts provide abstract methods and utility functions

for data upgrade classes.

Classes with preprocessing upgrade scripts are derived from the class ReleaseUpdateTransformDB,

and have different types of scripts and ways of scheduling them.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

42

The following diagram illustrates the class diagram of the upgrade script classes.

… more classes

for other modules

addStandardJob()

+ addDependency()+

addCrossModuleDependency()
+ moduleName()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ run()

ReleaseUpdateDB (SYS)

+ initPreSyncJobs()

+ initPostSyncJobs()

+ moduleName()
+ upgradeScript401()

+ upgradeScript401()

ReleaseUpdateDB401_Asset

(SYS)

+ initPreSyncJobs()

+ initPostSyncJobs()

+ moduleName()

+ upgradeScript401()

+ upgradeScript401()

ReleaseUpdateDB401_Ledger

(SYS)

Release 4.0 .1
V401 classes for upgrade
to Microsoft Dynamics AX
4.0 SP1

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript41()

+ upgradeScript41()

ReleaseUpdateDB41_Asset (SYS)

ReleaseUpdateDB41_Asset (SL1)

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript4013()

ReleaseUpdateDB41_Asset (VAR)

+ upgradeScript41()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript41()

Microsoft Dynamics AX 2009 RTM

Release 4.1
V41 classes for upgrade to
Microsoft Dynamics AX 2009

Microsoft Dynamics AX 2009 SP1

Overlaid:

Custom upgrade

scripts for Microsoft
Dynamics AX 4.0.1

in DIS and VAR

layers

ReleaseUpdateDB41_Ledger

(SYS)

+ upgradeScript41()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript41()

Release Microsoft Dynamics AX 2009
Service Pack 1
Upgrade scripts in SYP layer, copied to
Microsoft Dynamics AX 4.1 SYS layer

Microsoft Dynamics AX 2012

Release 6.0

V60 classes for upgrade to

Microsoft Dynamics AX 2012,

service pack upgrade scripts

Microsoft Dynamics AX 2012

ships

ReleaseUpdateDB41_Asset

(SYP)

+ upgradeScript41SP2()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript41SP1()

ReleaseUpdateDB60_Asset

(SYS)

+ upgradeScript60SP1()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript60SP2()

+ upgradeScript60()

ReleaseUpdateDB60_Ledger

(SYS)

+ upgradeScript60()

+ initPreSyncJobs()

+ initPostSyncJobs()

+ upgradeScript60()

Microsoft Dynamics AX 4.0 SP1

Figure 2. Data Upgrade Script Classes

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

43

Data Upgrade Scripts by Module

Data upgrade scripts are inserted into the data upgrade as methods of a

ReleaseUpdateDB<NN>_<module> class, where <NN> is the version of Microsoft Dynamics AX being

upgraded to, and <module> is the module name the script belongs to. These classes are derived from

the base class ReleaseUpdateDB and are connected to the data upgrade framework.

When you create upgrade scripts for your version of Microsoft Dynamics AX, you can use any of the

new classes in the following table according to your script application module and the version you are

developing.

Version 401 Version 41 Version 60

ReleaseUpdateDB401_Administration

ReleaseUpdateDB401_Bank

ReleaseUpdateDB401_COS

ReleaseUpdateDB401_Cust

ReleaseUpdateDB401_Ledger

ReleaseUpdateDB401_Proj

ReleaseUpdateDB401_Vend

ReleaseUpdateDB41_Administration

ReleaseUpdateDB41_Asset

ReleaseUpdateDB41_Bank

ReleaseUpdateDB41_Basic

ReleaseUpdateDB41_COS

ReleaseUpdateDB41_Cust

ReleaseUpdateDB41_HRM

ReleaseUpdateDB41_Invent

ReleaseUpdateDB41_Jmg

ReleaseUpdateDB41_KM

ReleaseUpdateDB41_Ledger

ReleaseUpdateDB41_Prod

ReleaseUpdateDB41_Proj

ReleaseUpdateDB41_Req

ReleaseUpdateDB41_SMA

ReleaseUpdateDB41_smm

ReleaseUpdateDB41_Trv

ReleaseUpdateDB41_Vend

ReleaseUpdateDB60_Administration

ReleaseUpdateDB60_Asset

ReleaseUpdateDB60_Bank

ReleaseUpdateDB60_Basic

ReleaseUpdateDB60_Cat

ReleaseUpdateDB60_Client

ReleaseUpdateDB60_COS

ReleaseUpdateDB60_Cust

ReleaseUpdateDB60_EcoRes

ReleaseUpdateDB60_EMS

ReleaseUpdateDB60_HRM

ReleaseUpdateDB60_Invent

ReleaseUpdateDB60_Jmg

ReleaseUpdateDB60_KM

ReleaseUpdateDB60_Lean

ReleaseUpdateDB60_Ledger

ReleaseUpdateDB60_PBA

ReleaseUpdateDB60_Prod

ReleaseUpdateDB60_Proj

ReleaseUpdateDB60_PurchReq

ReleaseUpdateDB60_Req

ReleaseUpdateDB60_SMA

ReleaseUpdateDB60_smm

ReleaseUpdateDB60_Sourcing

ReleaseUpdateDB60_Trv

ReleaseUpdateDB60_Vend

The naming convention ReleaseUpdateDB60 means upgrade to Microsoft Dynamics AX 2012. Pre-

synchronization, Post-synchronization, and Additional features upgrade methods coexist in these

classes.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

44

The following screenshot illustrates a view of the upgrade script classes in the AOT.

Figure 3. Upgrade Classes in the AOT

SYS Versions and Data Upgrade of Interim SYS releases

The SYS layer contains the core functionality of Microsoft Dynamics AX. A modification to this layer is

shipped to partners and customers in beta versions (for example, Microsoft Dynamics AX 4.0 TAP3),

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

45

final release version (for example, Microsoft Dynamics AX 4.0), and refresh versions of major releases

(for example, Microsoft Dynamics AX 4.0.1), referred to here as interim SYS releases. The data upgrade

framework supports upgrades that span multiple SYS releases by providing the infrastructure to

incrementally upgrade from one SYS release to another, later release as shown in the following

screenshot.

SYS versions are defined in the Base Enum SysReleaseVersion

Each ReleaseUpdateDB* class (except for the base ReleaseUpdateDB class and preprocessing upgrade

classes) is associated with a SYS version and named accordingly. The class hosts the data upgrade

scripts that upgrade the SYS data model from the previous SYS version to the current SYS version.

Upgrade scripts can span more than one SYS release. Therefore, each data upgrade script class

inherits upgrade scripts from the class of the same module in the most recent previous release. When

you need upgrade scripts for a new interim release, and when the upgrade script class for the

corresponding module does not yet exist, you create the class that uses the right naming convention

and ensure this class inherits upgrade scripts from the previous version of the upgrade script class of

the same module.

For example, in Figure 2, the Ledger module has upgrade scripts for version 4.0.1, 4.1, and 6.0 but

does not have an upgrade script for release version 4.0.1. For the Asset module, there are upgrade

scripts for versions 401, 41, 60 (Microsoft AX 2012). Therefore the class ReleaseUpdateDB41_Asset

must inherit from ReleaseUpdateDB401_Asset, which in turn inherits from ReleaseUpdateDB.

 Public class ReleaseUpdateDB41_Asset extends ReleaseUpdateDB401_Asset

 {

 }

 Public class ReleaseUpdateDB60_Asset extends ReleaseUpdateDB41_Asset

 {

 }

In order to incrementally upgrade from a SYS release that is two or more versions earlier, the

initPreSyncJobs, initPostSyncJobs and initAdditionalJobs methods must be overridden and you must

call “#initSyncJobsPrefix” to include the previous upgrade. The initPreSyncJobs, initPostSyncJobs and

initAdditionalJobs jobs detect the earlier (“from”) version of the upgrade and skips if necessary.

 void initPostSyncJobs()

 {

#initSyncJobsPrefix

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

46

 }

Finally, the purpose of an individual script is to upgrade a tables data from SysVer -1 to SysVer. Each

script is used to upgrade the data to the current version.

Writing Data Upgrade Scripts for ISV or customized solution in the Target Environment

An ISV solution has two options to write upgrade scripts:

Option 1: Use the upgrade framework to write upgrade scripts in the same way as the core upgrade

scripts have been created in the SYS layer. Choosing this option, the ISV solution should be installed

before running the major version upgrade, all ISV scripts will be loaded and scheduled along with the

core upgrade scripts during the major upgrade.

Option 2: Use the upgrade framework to write upgrade scripts for a minor upgrade after the major

version upgrade has been completed. Choosing this option, ISV scripts can be implemented in the

same way as option 1 with some differences:

 The preSync scripts must use the enum ReleaseUpdateScriptStage::PreSyncUpdate

 The postSync scripts must use the enum ReleaseUpdateScriptStage::PostSyncUpdate

 The Additional scripts must use the enum ReleaseUpdateScriptStage::AdditionalUpdate

 The script classes should implement initPreSyncUpdateJobs(),initPostSyncUpdateJobs(),

and initAdditionalUpdateJobs(). All of these methods should contain a single call to the

local macro, for example:

void initPostSyncUpdateJobs()

{

 #initSyncJobsPrefix

}

 After installing the scripts, ISV installer should call the

ReleaseUpdateDB::RegisterForMinorUpgradeScript method in Microsoft Dynamics AX to

register the scripts. The following code example registers three scripts. Use ttsbegin and

ttscommit to make sure all or none of the script is registered.

ttsbegin;

ReleaseUpdateDB::RegisterForMinorUpgradeScript(

 classStr(ReleaseUpdateDB60_ISV01), methodStr(ReleaseUpdateDB60_ISV01, Script01));

ReleaseUpdateDB::RegisterForMinorUpgradeScript(

 classStr(ReleaseUpdateDB60_ISV01), methodStr(ReleaseUpdateDB60_ISV01, Script02));

ReleaseUpdateDB::RegisterForMinorUpgradeScript(

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

47

 classStr(ReleaseUpdateDB60_ISV01), methodStr(ReleaseUpdateDB60_ISV01, Script03));

ttscommit;

 After the scripts have been registered, the next time Microsoft Dynamics AX starts, the Update

checklist will display to allow users to schedule and run the ISV scripts, the checklist can also

be opened manually using the display menu item SysCheckList_Update.

Create a single upgrade script that combines changes across multiple product versions

When upgrading to version n (target) from version n-2 (source), you can sometimes provide an

algorithm that upgrades data directly from the source to the target version without upgrading to the

interim version. We call these algorithms combined upgrade scripts. In cases for which you can create

a combined upgrade script, follow the best practices below:

 Place the algorithm in the upgrade class for the source version, replacing the original algorithm.

For example, if you are upgrading from version 4.0 to 6.0, put the combined algorithm in the

ReleaseUpdateDB401 class.

 Put a condition in a script in the upgrade class for the target version, setting it to execute only if

you are not upgrading from the source version. For example, change the script in the 6.0 version

to

public void updateCustTrans()

{

 if (ReleaseUpdateDB::getFromVersion() != sysReleasedVersion::v40)

 {

 Original script logic for upgrade from 5.0 to 6.0

 }

}

Using Configuration Key to Remove Obsolete Objects after Upgrade

After the upgrade is finished, you can disable the configuration keys “Keep update objects”

(SysDeletedObjects40, SysDeletedObjects41 and SysDeletedObjects60 for Microsoft Dynamics AX

2012). After database synchronization is complete, all obsolete components of the data model will be

removed and performance will be improved. The components that are removed are those needed to

perform the data upgrade, but provide no value when the process is completed.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

48

Data Upgrade Scripts in the target environment

Data upgrade scripts comprise the majority of the data upgrade framework. For each version, a set of

classes exists - one upgrade class per module. Currently, there are 26 application modules for upgrade

scripts. They are named ReleaseUpdateDB<version>_<module>, for example

ReleaseUpdateDB60_Bank.

Each of these classes contains scripts for pre-synchronization, post-synchronization and additional

upgrades.

The scripts are scheduled by their attributes specified at the beginning of every script method.

The methods initPreSyncJobs, initPostSyncJobs and initAdditionalJobs are still kept for version

checking.

Each class can handle your upgrade script in one of four different ways - Start, Shared, Standard, and

Final. Choose the right one so that the script runs at the correct time and in the correct manner:

 Pre-synchronization Post-synchronization Additional upgrade

Start (allow duplicates) -

Shared/Normal Shared/Normal Shared/normal

- Final (undo allow duplicates)

 Presynchronize Start scripts

 (Executed first)

Start scripts are used to change indexes that have become unique in order to allow duplicates.

This is a modification of meta data and must be undone in a post-synchronization final script

(see below). Start scripts are run once versus once per company as with normal scripts.

 Presynchronize Shared scripts

 (Executed once in parallel with pre-synchronization normal scripts)

Shared scripts are used mainly for cleanup jobs such as deleting duplicate records for tables

that have changed an index from allowing duplicates to being unique. Shared scripts are run

at the same time as normal scripts. The only way to ensure that a shared script is run before

another shared script or a normal script is to set up a dependency between the scripts. To

perform this operation, see Writing Data Upgrade Scripts below. Shared scripts are run only

once, as compared to normal scripts, which are run once per company

 Presynchronize Standard scripts

(Executed for each company account in parallel with pre-synchronization shared scripts)

Normal scripts are run once per company and are used for company-specific clean up jobs,

rebuilding indexes, or deleting company-specific data that will be regenerated later.

 Presynchronize Final scripts

Used very rarely. Pre-synchronization start, shared and normal scripts manage dependencies

better.

 Postsynchronize Start scripts

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

49

Used very rarely. Post-synchronization shared, normal and final scripts manage dependencies

better.

 Postsynchronize Shared scripts

(Executed once in parallel with post-synchronization normal scripts)

Shared scripts are run once and used to update non company-specific tables.

 Postsynchronize Standard scripts

(Executed for each company account in parallel with post-synchronization shared scripts.)

Standard scripts are run once per company and are used to update company specific tables.

(~90% of all scripts are of this type)

 Postsynchronize Final scripts

(Executed last)

Final scripts are used to undo changes to indexes that were made to allow duplicates using

the pre-synchronization start script. Final scripts are run only once, as compared to normal

scripts, which are run once per company.

 Upgrade additional features scripts

Upgrade additional features scripts are used to upgrade of the non-core functionality after

the functional data upgrade

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

50

Writing Data Upgrade Scripts for Target Environment

To create a script you need to create a method on the appropriate class. For example, for

Microsoft Dynamics AX 6.0 the class is ReleaseUpdateDB60_<module>. You must also inform the

framework how to handle the script. This is done by by providing attributes for their upgrade script

methods like following:

[UpgradeJobTypeAttribute(Standard),

UpgradeJobTitleAttribute ("@SYS97795"),

UpgradeJobConfiguratuionKeyAttribute (configurationKeyStr(ProjBasic)),

UpgradeJobConfiguratuionKeyAttribute (configurationKeyStr(HRMBasic)),

UpgradeJobDependsOnJobAttribute (ReleaseUpdateDB60_Proj, updateProjOnAccountPosting)]

void updateProjCategory()

{

 ProjCategory projCategory;

 ttsbegin;

 update_recordset projCategory

 setting Active = NoYes::Yes;

 ttscommit;

}

Here is the list of available attributes:

 Shared/ Standard / Start/ Final

 PreSync/PostSync/Additional

 Configuration keys associated with the script

 Script description(label)

 Does the script requires its own transaction

 (optional) Dependencies on another scripts or tables

 Table names

 Type of access to each table : Create, Read, Update, Delete

UpgradeScriptDescriptionAttribute: one attribute per method allowed

Value: String

UpgradeScriptStageAttribute: one attribute per method allowed

 Values: enum values PreSync, PostSync, Additional

UpgradeScriptTypeAttribute: one attribute per method allowed

 Values: enum values Standard, Shared, Start, Final

UpgradeScriptTransactionAttribute: one attribute per method

 Value: enum Yes/No

UpgradeScriptTableAttribute: several attributes allowed

Value: String (table name),

enum: Yes/No (Create),

enum: Yes/No (Read),

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

51

enum: Yes/No (Update),

enum: Yes/No (Delete)

for example,

[UpgradeScriptTableAttribute(tableStr(LedgerTable), false, true, true, false)]

For legacy compatibility, Microsoft Dynamics AX supports adding upgrade scripts, by adding a line in

the initPreSyncJobs or initPostSyncJobs or initAdditionalJobs method on the class. Each of these

ReleaseUpdateDBxx_xxx classes contains three separate methods you can modify to schedule your

jobs – initPreSyncJobs, initPostSyncJobs and initAdditionalJobs. To run the job in the pre-synchronize

phase, add it to the initPreSyncJobs method, otherwise add it to the initPostSyncJobs method or to

the initAdditionalJobs method for the additional feature upgrade.

This method is not recommended and is mainly preserved for legacy support. The following example

shows the script templates you can use:

this.addStartJob(methodStr(<ClassName>, <MethodName>), "description", [configurationkeynum(ConfigurationKey1), …,

configurationkeynum(ConfigurationKey1)]);

this.addSharedJob(methodStr(<ClassName>, <MethodName>), "description", [configurationkeynum(ConfigurationKey1), …,

configurationkeynum(ConfigurationKey1)]);

this.addStandardJob(methodStr(<ClassName>, <MethodName>), "description",[configurationkeynum(ConfigurationKey1), …,

configurationkeynum(ConfigurationKey1)]);

this.addFinalJob(methodStr(<ClassName>, <MethodName>), "description",[configurationkeynum(ConfigurationKey1), …,

configurationkeynum(ConfigurationKey1)]);

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

52

The following diagram illustrates a class diagram of the attribute based upgrade model.

SysAttribute

+new()

-ScriptName

UpgradeScriptNameAttribute

+new()

-ScriptDescription

UpgradeScriptDescriptionAttribute

+new()

-ScriptCategory

UpgradeScriptCategoryAttribute

+new()

-ScriptType

UpgradeScriptTypeAttribute

+new()

-ScriptConfigurationKey

UpgradeConfiguratuionKeyAttribute

+new()

-ScriptDependsOnTask

UpgradeScriptDependsOnTaskAttribute

+new()

-ScriptDependsOnTask

-ScriptDependsOnClass

UpgradeDependsOnAnotherModuleAttribute

+new()

-ScriptDependsOnTask

UpgradeScriptDependsOnTaskAttribute

+new()

-ScriptDependsOnTask

-ScriptDepensOnClass

-ScriptDependsOnVersion

UpgradeDependsOnAnotherVersionAttribute

+new()

-Transaction

UpgradeScriptDatabaseTransactionAttribute

+new()

-Create

-Read

-Update

-Delete

UpgradeScriptTableAttribute

Upgrade script configuration keys

You can provide an optional set of configuration keys associated with an upgrade script -

[configurationkeynum (<config key name1,config key name2, ... , config key name n>]. The script will be

scheduled to run if at least one configuration key associated with script is enabled during upgrade.

You can do this by specifying attribute for your upgrade script:

UpgradeConfiguratuionKeyAttribute : several attributes allowed

 (attribute will be joined with OR; for complex OR and AND between configuration keys –

upgrade script should handle it with if/else condition within upgrade script)

 Value: Configuration key

For compatibility purposes, legacy way of specifying configuration key is still supported, but not

recommended:

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

53

this.addFinalJob(methodstr(ReleaseUpdateDB60_Administration, allowDupSysExpImpTableGroupIdx), "@SYS97945",

[configurationkeynum(Asset), configurationkeynum(Bank)]);

Also, you can specify a set of configuration keys on the module level by using the

setModuleConfigKey function. The module configuration key set is joined with each upgrade script

configuration key set for that module.

this.setModuleConfigKey([configurationkeynum(ConfigurationKey1),…,configurationkeynum(ConfigurationKey1)])

If you are using setModuleConfigKey, it should be called from the InitPreSyncJobs, initPostSyncJobs

and InitAdditionalJobs methods separately.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

54

Script Dependencies

You can also add dependencies between your scripts. This can be useful to avoid locking and for

enforcing a logical flow of your scripts. To add a dependency, you can add appropriate attribute

before your upgrade script (recommended) or include call to addDependency method in the

appropriate InitXXXJobs method:

 If you have a dependency between the scripts inside a module, use the

UpgradeDependsOnTaskAttribute or addDependency method.

this.addDependency(methodStr(<ClassName>, <MethodName>),

 methodStr(<ClassName>, <MethodName>));

where the first method must be executed before the second method executes.

 If the script is dependent on another module script, you can use the

UpgradeDependsOnModuleAttribute or addCrossModuleDependency method to

ensure a correct execution sequence between scripts placed in the different classes:

this.addCrossModuleDependency(classnum(<ClassName>), methodStr(<ClassName>, <MethodName>),

 classnum <ClassName>, methodStr(<ClassName>, <MethodName>));

 If the script is dependent on another module script from a previous version, you

can use the UpgradeDependsOnVersionAttribute or

addCrossVersionModuleDependency method to ensure that the correct execution

sequence between scripts placed in the different versions and modules:

this.addCrossVersionModuleDependency(

 classnum(<ClassName>),

 methodStr(<ClassName>, <MethodName>),

 SysReleaseVersion::<version>,

 classnum <ClassName>,

 methodStr(<ClassName>, <MethodName>),

 SysReleasedVersion::<version>);

 If there are scripts depending on your script and you want to set the dependency but

do not want to change the other scripts, you can use the

UpgradeTaskDependsOnMeAttribute or

UpgradeModuleDependsOnMeAttribute.

4. If a script is dependent on another script from a previous version but located

in the same module, then you do not need a dependency, the upgrade

framework will provide an implicit dependency in this case.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

55

Here is an example of the dependency tree:

Upgrade dependency tree

… more classes

for other modules

Start scripts

Standard and

Shared scripts

Final scripts

Upgrade starts

ReleaseUpdateDB401_Asset

Start scripts

ReleaseUpdateDB41_Asset

Start scripts

ReleaseUpdateDB60_Asset

Start scripts

ReleaseUpdateDB401_Ledger

Start scripts

ReleaseUpdateDB41_Ledger

Start scripts

ReleaseUpdateDB60_Ledger

Start scripts

ReleaseUpdateDB401_Asset

Standard and Shared scripts

ReleaseUpdateDB41_Asset

Standard and Shared scripts

ReleaseUpdateDB60_Asset

Standard and Shared scripts

ReleaseUpdateDB401_Ledger

Standard and Shared scripts

ReleaseUpdateDB41_Ledger

Standard and Shared scripts

ReleaseUpdateDB60_Ledger

Standard and Shared scripts

… more classes

for other modules

ReleaseUpdateDB401_Asset

Final scripts

ReleaseUpdateDB41_Asset

Final scripts

ReleaseUpdateDB60_Asset

Final scripts

ReleaseUpdateDB401_Ledger

Final scripts

ReleaseUpdateDB41_Ledger

Final scripts

ReleaseUpdateDB60_Ledger

Final scripts

… more classes

for other modules

Example of a Custom Cross module

cross version dependency

Example of a custom Cross
Module Dependency

Precautions When You Write Data Scripts Before Synchronization

Pre-synchronization data upgrade scripts are executed before the new version of

Microsoft Dynamics AX Object Data (AOD) is synchronized to the Microsoft Dynamics AX database

and before the data is copied over from the source system to target system. This means that the

executed code will use a new version of metadata, but the database will still be empty.

The following lists tables that are synchronized during AOS startup before the upgrade checklist starts:

SysSetupLog

SysSetupCompanyLog

SysRecordTemplateTable

SysRecordTemplateSystemTable

SysTraceTable

SysTraceTableSQL

SysTraceTableSQLExecPlan

SysTraceTableSQLTabRef

SysProgress

SysBPParameters

SysRemoveFields

SysRemoveTables

SysRemoveConfig

SysRemoveLicense

SysLicenseCodeSort

DocuParameters

ReleaseUpdateBulkCopyTable

ReleaseUpdateBulkCopyField

DEL_SysSetupLog

ReleaseUpdateTransformTable

DEL_ReleaseUpdateTransformTable

ReleaseUpdateTransformSourceField

ReleaseUpdateTransformTargetField

ReleaseUpdateBulkCopyTableExceptions

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

56

SysUserLog

SysUserInfo

SysUtilElementsLog

SysCompanyUserInfo

SysInetCSS

SysInetThemeTable

SysImageTable

SysPersonalization

LanguageTable

SysSignatureSetup

SysDataBaseLog

SysExceptionTable

DEL_Batch

DEL_BatchGroup

BatchJob

BatchConstraints

Batch

BatchGroup

SysServerConfig

SysClusterConfig

BatchServerConfig

BatchJobAlerts

BatchServerGroup

BatchJobHistory

BatchHistory

BatchConstraintsHistory

BatchGlobal

EPStateStore

EPStateStoreSettings

EPServerStateCleanupSettings

EPWebSiteParameters

EPGlobalParameters

SysBCProxyUserAccount

SRSServers

AifWebsites

Currency

SysSQMSettings

SysSecurityFormTable

SysSecurityFormControlTable

SysEvent

KMConnectionType

SalesParmUpdate

SalesParmSubTable

PurchParmUpdate

PurchParmSubTable

SysVersionControlParameters

ReleaseUpdateScripts

ReleaseUpdateScriptDependency

ReleaseUpdateJobStatus

ReleaseUpdateScriptsUsedTables

ReleaseUpdateBulkTableInfo

ReleaseUpdateSysDeleted

DocuOpenFile

TimezoneInfo

DEL_SysUpgradeTimeZone

DEL_SysUpgradeBaseTimeZone

WorkflowWorkItemDelegationParameters

WorkflowWorkItemCommentTable

SysUpgradeTreeNodeConflictInfo

SysUpgradeParameters

SysUpgradeOverriddenEstimates

ReleaseUpdateBulkCopyParameters

ReleaseUpdateBulkFlags

ReleaseUpdateDiscoveryStatus

DEL_ReleaseUpdateDictionaries

DEL_SqlDictionary

DEL_SystemSequences

DEL_SysLastValue

ReleaseUpdateBulkCopyLog

ReleaseUpdateSpecialTableMapping

ReleaseUpdateSpecialFieldMapping

ReleaseUpdateBulkRefRecIdPatch

ReleaseUpdateExtendedDataTypes

ReleaseUpdateDataAreaOffsets

ReleaseUpdateConfiguration

DataArea

DEL_CompanyDomainList

ReleaseUpdateConfigKey

NumberSequenceDatatype

NumberSequenceDatatypeParameterType

SysXppAssembly

SecurityRoleAllTasksView

For these special tables, you cannot use pre-synchronization Start scripts. If you change the field ID on

one of these tables, code changes must be made directly in the \Classes\Application\syncApplTables()

method.

Changes in Application classes are risky and should be made with caution. The following code

illustrates changes to an Application class:

if (!this.isRunningMode())

{

 ttsbegin;

 if (isConfigurationkeyEnabled(configurationkeynum(CRSEGermany)))

 {

 ReleaseUpdateDB::changeFieldByName('TaxRepresentative', 41, 0, 75);

 }

 ttscommit;

}

syncTable(tablenum(CompanyInfo));

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

57

Best Practices for Writing Data Upgrade Scripts

Best Practice Checks

In Microsoft Dynamics AX 2010, there are now several best practice checks that

help to verify the completeness of upgrade script attributes.

How An Upgrade Script Is Identified

Any method that is decorated with the following attributes is considered an upgrade script:

 UpgradeScriptDescriptionAttribute

 UpgradeScriptTypeAttribute

 UpgradeScriptStageAttribute

 UpgradeScriptTableAttribute

There are conditions that further identify a method as an upgrade script that are not considered for

performance reasons when you check for best practices. During an actual upgrade, the additional

conditions are considered and validated.

The following lists BPError codes when a violation occurs and the resolution.

BPError code and condition/message Resolution

BPErrorMethodIsStatic

An upgrade script cannot be a static method.

Remove the static modifier.

BPErrorMethodHasParams

An upgrade script cannot accept parameters.

Remove the parameters.

BPErrorMissingReqDesc

For scripts that upgrade to Microsoft Dynamics AX 2012, the

UpgradeScriptDescriptionAttribute attribute is required.

Add the required attribute.

BPErrorMissingReqType

For scripts that upgrade to Microsoft Dynamics AX 2012, the

UpgradeScriptTypeAttribute attribute is required.

Add the required attribute.

BPErrorMissingReqStage

For scripts that upgrade to Microsoft Dynamics AX 2012, the

UpgradeScriptStageAttribute attribute is required.

Add the required attribute.

BPErrorMissingReqTable

One or more UpgradeScriptTableAttribute attributes are required for all

upgrade scripts. In addition, any table referenced in the method must have a

corresponding UpgradeScriptTableAttribute attribute.

Add the required attribute for any

tables referenced by the upgrade

script.

The following upgrade scripts are

exempt from this requirement:

 deleteDuplicatesUsingIds

 deleteDuplicatesUsingNames

 indexAllowDup

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

58

 indexAllowNoDup

BPErrorTableNotFound

The table name specified in the UpgradeScriptTableAttributes attribute is not

valid. Use the tableStr(<table>) method to catch this issue at compile time.

Ensure the table specified exists

and that the name is typed

correctly.

BPErrorConfigurationKeyNotFound

The configuration key specified in UpgradeScriptConfigKeyAttribute attribute

is not valid. Use the configurationKeyStr(<configurationKey>) method to

catch this issue at compile time.

Ensure the configuration key exists

and that the name is typed

correctly.

BPErrorClassNameNotFound

The class name specified in UpgradeDependsOnModuleAttribute attribute or

UpgradeDependsOnVersionAttribute attribute is not valid. Use the

classId(<class>) method to catch this issue at compile time.

Ensure the class exists and that the

name is typed correctly.

BPErrorMethodNameNotFound

The method name specified in UpgradeDependsOnModuleAttribute attribute,

UpgradeDependsOnTaskAttribute attribute, or

UpgradeDependsOnVersionAttribute attribute is not valid. Use the

methodStr(<class>, <method>) method to catch this issue at compile time.

Ensure the method exists and that

the name is typed correctly.

BPErrorInvalidScriptVersion

The module for an upgrade script must have a version macro defined in the

class declaration:

#define.version(sysReleasedVersion::v60)

Ensure the version macro is defined

and that it is not Unknown or

vNext.

Transaction and Idempotency

It is an important requirement that each data upgrade script be idempotent. Idempotent means that if

the execution fails, it must be able to execute successfully with the desired results upon reexecution.

The data upgrade framework guarantees idempotency by enclosing each script within a transaction,

ensuring that the script is only executed once. Although this is a simple and robust way to ensure

idempotency it results in a performance decline when an upgrade script has complex logic in a loop

on a large table. In Microsoft Dynamics AX 4.0, this mechanism is optional such that an individual

script can be run without the transaction at the highest level. When this option is chosen, the

individual script must implement its own idempotency logic.

Another important consideration for implementing idempotency is that you can upgrade from many

different versions. For example, if you write an upgrade script for SP2 of version N, when version N+1

is shipped, your customers are upgrading from both Version N SP1 and Version N SP2. This means

that some customers already are upgraded and others are not. If your upgrade script is idempotent,

you can just reuse it for the upgrade to version N+1.

If an upgrade script contains an error, it is easier to resolve the problem if the script is idempotent.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

59

Coding Best Practices

Indicating Progress

To supply progress status, you can use a simplified version operation progress by calling:

this.tableProgress(<tableId>);

Include the table-ID for the table you have just updated. This should only be called once in each

outermost loop (even if you are updating several tables in the inner loops).

Documenting Scripts

You should include meaningful comments in each data upgrade script to explain the functionality of

the script.

Deleting a Table or Field from the Data Model

It is not possible to delete data from the data model as this would be the equivalent of deleting

customer data. This also applies to fields that were never used or fields that appear in the UI (unless

they are temporary). Removing a field or table requires careful planning and execution as follows:

1) Prefix the name of the item to be removed with "DEL_" and move it to the upgrade model, using

the following steps:

a) For fields and indexes:

 Rename them in the AOT using F2 or the PropertySheet. The field/index will automatically

be moved into the upgrade model in the next build.

 In the rare case where you want the DEL_ fields/indexes to remain in the Foundation, you

can add the table to the exclusion list here:

//depot/main/source/application/CombineXPOs/NoDelExclusionList.txt.

This should only be used when production code needs the tables in a post-upgrade

scenario.

b) For tables, enums and extended data types:

 Turn-off version control.

 Rename the element in the AOT using F2 or the PropertySheet.

 Right-click the element and click Move to model. Click Foundation Upgrade, click Ok.

 In CoreXT type:

CD “source\application\sys\data dictionary”

For tables:

SD integrate “tables\<tablename>.xpo” “..\..\sysupgrade\data

dictionary\tables\DEL_<tablename>.xpo”

SD delete “tables\<tablename>.xpo”

For enums:

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

60

SD integrate “base enums\<enumname>.xpo” “..\..\sysupgrade\data dictionary\base

enums\DEL_<enumname>.xpo”

SD delete “base enums\<enumname>.xpo”

For extended data types:

SD integrate “extended data types\<typename>.xpo” “..\..\sysupgrade\data

dictionary\extended data types\DEL_<typename>.xpo”

SD delete “extended data types\<typename>.xpo”

i) Turn-on version control again

2) Set the configuration property to: "SysDeletedObjectsXX" where XX is the next version, for

example "60" (for Microsoft Dynamics AX 2012)

3) Implement the upgrade script that will transform the data into the new data model. Verify the

current model is Foundation Upgrade when you create the class.

4) Test the upgrade script

5) Benchmark the upgrade script

6) (New for Interim Upgrade): When deleting a field from a table, do not delete the table or field

permanently from the AOT. They need to stay in the source until the release, where they are

deleted is no longer supported by upgrade. For example, if a Microsoft Dynamics AX 4.0 field is

renamed in Microsoft Dynamics AX 4.1 as a DEL_field, it needs to stay in the source until Microsoft

Dynamics AX 2012.

7) When deleting a table, after you rename the table to DEL_TableName then the upgrade process

will copy the data from the previous version to this Del_ table. It is not a good practice to have

two copies of the same table. The old table & field can be deleted after creating the DEL_ table &

fields. These DEL_ tables should be tied to SysDeleted configuration keys.

Unique Indexes

It is important that the database can synchronize without errors when the customer upgrades. Three

scenarios require special attention when dealing with index changes:

 Removing a field from a unique index

 Adding a new unique index

 Making a non-unique index unique, (setting the AllowDuplicates property to false)

All these scenarios make an index more restrictive and will cause the synchronization to fail if not

handled properly.

The easiest solution is to delete the data that collides with the index. This should only be done in

situations where it doesn't make sense to keep the duplicate records. This is performed using the

following steps:

 Create a start pre-synchronization upgrade script. This will change the index to allow duplicates:

 DictIndex dictIndex = new

 DictIndex(TableNum(<TableName>),indexNum(<TableName>,<IndexName>));

 ;

 ReleaseUpdateDB::indexAllowDup(dictIndex);

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

61

 Create a normal upgrade script. This will move the data according to the new data model.

 Create a final post-synchronization upgrade script. This will change the index to not allow

duplicates:

 DictIndex dictIndex = new

 DictIndex(TableNum(<TableName>),indexNum(<TableName>,<IndexName>));

 ;

 ReleaseUpdateDB::indexAllowNoDup(dictIndex);

Consideration for date effective table in upgrade script

Some Microsoft Dynamics AX 2010 tables with date effective indexes that are disabled then re-

enabled after synchronization (see section ‘Unique Indexes’) will also require that the property

‘ValidTimeStateKey’ is also set to ‘Yes’ along with re-enabling of the index. To set the

‘ValidTimeStateKey’ property on the index, follow this pattern:

 public void allowNoDupAssetParmDeprRtsDEDateEffcIdx()

 {

 DictIndex dictIndex = new DictIndex(tablenum(AssetParametersDeprRates_DE),

 indexnum(AssetParametersDeprRates_DE, DateEffcIdx));

 dictIndex.modify(true, false, true);

 dictIndex.setAlternateKey(true, true);

 // Set the ValidTimeStateMode to the appropriate value for your index;

 // i.e. what the value was before the index was disabled.

 dictIndex.setValidTimeStateKey(true, ValidTimeStateMode::Gap, true);

 appl.dbSynchronize(dictIndex.tableid(), false);

 }

Fixing table/field mapping errors

Preventing Copying of Table Data

Situations may occur where you may not want to copy the contents of a table from the source

environment to the target environment, for example, if the table will be used in the new version (but

not if the table has become obsolete). This can be useful when the contents of the table are auto-

generated. To do this, create a pre-synchronization shared script using the pattern:

 ReleaseUpdateDB::addBulkCopyTableException(tableStr(<table>), ReleaseUpdateBulkCopyTableExceptionType::DoNotCopy);

Another option is to create a pre-synchronization standard script using the delete_from construct.

Applying Field Options

Situations may occur when you need to perform operations on specific table fields during copy &

sync. To do this, create a pre-synchronization shared script using the following pattern:

ReleaseUpdateDB::addBulkCopyFieldOption(tableStr(<table>), fieldStr(<table>, <field>),

ReleaseUpdateBulkCopyFieldOption::LTrimTarget);

ReleaseUpdateBulkCopyFieldOption supports the following elements:

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

62

LTrimTarget

Applies the Sql LTRIM operator to the source value as it is copied to the target, allowing previously

right aligned data to be left-aligned in the target environment.

DoNotCopy

Removes the specified field from the source table’s SELECT statement during the bulk copy phase,

preventing the field’s data from being copied to the target system.

Truncating a Table During Copy & Sync

Situations may occur when you need to truncate the contents of a table in the target environment

during copy& sync.

 If the table is not empty at the time of mapping, it is considered a mapping error

 If the table is not empty, the data will NOT be copied from the source system

 Watch for tables where data can be created accidentally:

 SalesParameters::find()

 InventDim::inventDimIdBlank()

 DO NOT ignore this error

To do this, create a pre-synchronization shared script using the pattern:

 ReleaseUpdateDB::addBulkCopyTableException(tableStr(<table>),

ReleaseUpdateBulkCopyTableExceptionType::TruncateOnCopy);

This will truncate the data on the target table and then copy the source table data.

Example:

[

UpgradeScriptDescriptionAttribute("@SYS115198"),

UpgradeScriptStageAttribute(ReleaseUpdateScriptStage::PreSync),

UpgradeScriptTypeAttribute(ReleaseUpdateScriptType::SharedScript),

UpgradeScriptTableAttribute(tableStr(ReleaseUpdateBulkCopyTableExceptions),

true,true,false,false)

]

public void deletePrePopulatedData()

{

 ReleaseUpdateDB::addBulkCopyTableException(tableStr(DirNameSequence),

 ReleaseUpdateBulkCopyExceptionType::TruncateOnCopy);

}

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

63

Specifying the Shadow/Source Table JOIN Type

By default, shadow tables are joined to the source table during the bulk copy operation using a simple

‘JOIN’. Specify a different join type using the following pattern in the preprocessing script:

 ReleaseUpdateTransformDB.setShadowTableJoinType(_shadowJoinType);

_shadowJoinType is of type ReleaseUpdateJoin and can be one of the following values:

 ReleaseUpdateJoin::Join // ‘JOIN’ (default)

 ReleaseUpdateJoin::FullOuterJoin // ‘FULL JOIN’

 ReleaseUpdateJoin::LeftOuterJoin // ‘LEFT JOIN’

 ReleaseUpdateJoin::RightOuterJoin // ‘RIGHT JOIN’

Mapping a Table with name and fieldid or tableid changed

When a table or field’s name is changed, and there is a possible conflict between new and existing

table or field names, in order to preserve the table and its data, you must call the following methods

in a pre-synchronization Start script:

static void void ReleaseUpdateBulkCopyMap.addTableNameMapping(tableName _oldTableName,

tableName _newTableName, NoYes _system = NoYes::No)

static void ReleaseUpdateBulkCopyMap.addFieldNameMapping(tableName _oldTableName, fieldName

_oldFieldName, tableName _newTableName, fieldName _newFieldName, NoYes _system = NoYes::No)

FIELDTYPE of the sourface and target mapping should match. If there is a mismatch in fieldtype the

framework do not copy the data.

The following is an xample of mapping a field:

[

UpgradeScriptDescriptionAttribute("@SYS53630"),

UpgradeScriptConfigKeyAttribute(configurationkeystr(LogisticsBasic)),

UpgradeScriptStageAttribute(ReleaseUpdateScriptStage::PreSync),

UpgradeScriptTypeAttribute(ReleaseUpdateScriptType::SharedScript),

UpgradeScriptTableAttribute(tablestr(InventDim), false, false, true, false)

]

public void updateFieldMappingInventDim()

{

 ReleaseUpdateBulkCopyMap::addFieldNameMapping(

 'Shadow_InventDim', 'ShadowRecId',

 tablestr(InventDim), fieldstr(InventDim, RecId));

}

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

64

Mapping a Table with Table ID or Field ID Changed

When a table or field’s id is changed, no upgrade scripts are needed.

However, for legacy compatibilty, we support the following functions to accommodate ID of a table or

field change:

ReleaseUpdateDB::ChangeTableID (for table ID changes)

ReleaseUpdateDB::ChangeFieldID (for field ID changes)

You can also use the following methods to address tables and fields by name:

ReleaseUpdateDB::ChangeTableByName (for table ID changes)

ReleaseUpdateDB::ChangeFieldByName (for field ID changes)

For a few special tables that are listed in the “Precautions When You Write Data Scripts Before

Synchronization” section, you cannot use the pre-synchronization Start script. Please refer to that

section for more details and code samples.

Deleting Configuration Keys

Configuration keys should not be deleted. Configuration key changes are not handled by code

upgrade, therefore, changes will not be detected at code upgrade time. If a customization has been

set up to use a Microsoft Corporation shipped configuration key in custom tables, and if the

configuration key is deleted, the table will be lost during synchronization.

Referencing Number Sequences within upgrade scripts

If a number sequence has to be referenced within a X++ upgrade script, it is recommended to code

that reference as a separate method insetad of hardcoding it within the script itself, which will make

the process of changing it easier for a user running the upgrade

private NumberSequenceReference numberSequenceReference_SQ()

{;

 return NumberSeqReference::findReference(extendedTypeNum(SQ));

}

Later in the upgrade script, you can use that method to get the actual number sequence

num = NumberSeq::newGetNum (this.numberSequenceReference_SQ(), false);

salesQuotationTable.QuotationId = num.num();

If the number sequence you are using is for an an extended data type that is new to Microsoft

Dynamics AX 2012, or if there is the possibility that it has not been previously instantiated within the

current scope , you must first instantiate the number sequence prior to using it. Although this is

normally an administrator task, which allows the administrator to override some default settings, this

can be done programatically from the upgrade script by calling:

NumberSequenceTable::autoCreate (extendedTypeNum(SQ), [scope]);

At the top of an upgrade script add to the list of attributes:

UpgradeScriptTransactionAttribute(false)

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

65

This ensures that upgrade / batch do not automatically wrap the script in a transaction.

While debugging, if you decide to add or change this attribute you need to:

1) Generate IL

2) Rerun upgrade from the step of prioritize dependencies

Failure to do these steps will mean the code you are executing in upgrade will not capture your

changes.

Performance Guidelines

Performance is a critical piece of the upgrade process and requires that you think about each line in

your script. Most companies will perform this task over a weekend, so the entire upgrade process

must be able to be completed within 48 hours. The actual update will typically be performed between

Friday night and Monday morning. In addition, prior to running the upgrade process on a live system,

the upgrade process is tested several times on a test system.

In addition to the following considerations, please read Performance Improvement Options to

determine which apply to your upgrade scripts:

 Monitor and minimize the number of client/server calls.

 Use record set functions whenever possible.

 Break down your scripts into smaller pieces. For example, do not upgrade two independent tables

in the same script even if there is a pattern in the way the scripts work. This is because:

 Each script, by default, runs in one transaction (=one rollback segment). If the segment

becomes too large, the database server will start swapping memory to disk, and the script

will slowly come to a halt.

 Each script can be executed in parallel with other scripts.

 Partial commits can only be used out of the box in one situation; this is when the table to upgrade

is large and contains a discriminator that can be used to split the script into several scripts. For

example, update all "Open" in one script and all "Closed" in another. The scripts should be set up

to be dependant on each other to avoid locking problems. (see point below regarding database

lock contention)

 Take care when you sequence the scripts. For example, do not update data first and then delete it

afterwards.

 Be careful when calling normal business logic in your script. Normal business logic is not usually

optimized for upgrade performance. For example, the same parameter record may be fetched for

each record you need to upgrade. The parameter record is cached, but just calling the Find

method takes an unacceptable amount of time. For example, the kernel overhead for each

function call in Microsoft Dynamics AX is 5 ms. Usually 10-15 ms will elapse before the Find

method returns (when the record is cached). If there are a million rows, two hours will be spent

getting information you already have. The solution is to cache whatever is possible in local

variables.

 Run benchmarking on your script using large datasets to verify your performance is acceptable.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

66

 If database lock contention prevents the data upgrade process from scaling up with multiple

batch clients running in parallel, consider disabling the transaction in the framework and ensuring

idempotency by one of the following:

 Using an existing field/condition that can check if the table/record has been updated

 Adding new fields to track upgrade status

 Using the primary key as ordering columns and recording the last row that was updated

 Use index tunint. Create indexes to speed up the upgrade and possibly remove them after the

upgrade. Setting up a configuration key to SysDeletedObjects<version> can help you ensure that

the index is deleted after the upgrade is finished.

 If there is no business logic in the script, rewrite the script to issue a direct query to bulk update

the data. To write Direct SQL queries, see Appendix 2: Guidelines for Writing Direct SQL in

Upgrade Scripts.

Performance Improvement Options

This section provides information to improce performance of upgrade scripts.

Using the Set-based Operators Delete_From, Update_RecordSet and Insert_SecordSet

If the script performs inserts, updates, or deletes within a loop, you should consider changing the logic

to use one of the set-based statements. If possible, use these set options to perform a single set-

based operation.

When using set-based operations:

 With Insert_RecordSet you cannot use a literal or function call in the field list. This operation does

not handle configuration keys so special care is required.

 With Update_RecordSet you cannot perform inner or left outer joins.

 Set based statements do not support memo fields.

Please refer to Speeding Up SQL Operations and Maintain Fast SQL Operations on MSDN for the list

and syntax of set based operations available in Microsoft Dynamics AX 2012.

Example:

Before performance improvement:

while select inventTable

 where inventTable.ItemType == ItemType::Service

{

this.tableProgress(tablenum(InventTable));

delete_from inventSum where inventSum.ItemId == inventTable.ItemId;

}

After performance improvement:

delete_from inventSum

 exists join inventTable

 where inventTable.ItemId == inventSum.ItemId

 && inventTable.ItemType == ItemType::Service

http://blogs.msdn.com/b/emeadaxsupport/archive/2009/09/23/debugging-non-interactive-x-code-in-dynamics-ax-2009-when-running-on-windows-server-2008.aspx
http://msdn.microsoft.com/en-ca/library/aa849875.aspx

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

67

Calling skipDataMethods and skipDatabaseLog Before Calling Update_RecordSet or

Delete_From

If your script runs delete_from or update_from on a large table where the delete() or update()

methods of the target table have been overwritten, the bulk database operation will fall back to

record-by-record processing. To prevent this, call the skipDataMethods(true) method to cause the

update() and delete() methods to be skipped. Also, you can call the skipDatabaseLog(true) method to

improve performance.

Example:

taxExchRateAdjustment.skipDataMethods(true);

taxExchRateAdjustment.skipDatabaseLog(true);

update_recordset taxExchRateAdjustment

 setting GovernmentExchRate = taxExchRateAdjustment.UseGovtBankRate

 where taxExchRateAdjustment.UseGovtBankRate == NoYes::Yes;

Using RecordInsertList Class to Batch Multiple Inserts

If the business scenario cannot be written as insert_recordset, consider using the RecordInsertList class

to batch multiple inserts to reduce network calls. This operation is not as fast as insert_recordset, but

is faster than individual inserts in a loop.

Example:

rilAssetTransMerge = new RecordInsertList(tablenum(assetTransMerge));

while select assetTrans

{

if (!AssetTransMerge::exist(AssetBookType::ValueModel,assetTrans.RecId))

{

 assetTransMerge.AssetId = assetTrans.AssetId;

 assetTransMerge.AssetGroup = assetTrans.AssetGroup;

 …

 rilAssetTransMerge.add(assetTransMerge);

 }

}

rilAssetTransMerge.insertDatabase();

Optimizing X++ logic

To optimize X++ logic, apply the following rules:

 Minimize the amount of time spent in the X++ interpreter

 For database related code, ensure SQL is fully utilized by including where conditions, for example,

to check for null values, using joins across tables

 Use set-based updates and inserts instead of record-based updates and inserts

For more information on Financial Dimensions, download the whitepaper called Implementing the

Account and Financial Dimensions Framework.

The following examples illustrate common mistakes in code:

while select forupdate projForecastCost

where ! projForecastCost.TransId

http://go.microsoft.com/fwlink/?LinkID=218342&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=218342&clcid=0x409

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

68

{

 if (! projForecastCost.TransId)

 {

 numberSeq = NumberSeq::newGetNum(ProjParameters::numRefProjTransIdBase());

 }

}

The where !projForecastCost.TransId is already checked by SQL. There is no need to check the value

again. The entire statement if (! projForecastCost.TransId) should be removed.

void someFunc()

{

 while select custTable

 {

 if (custNum != 0)

 {

 dosomething()

 }

 }

}

Again, this is not good coding practice. SQL can perfom this operation for you.

Rewrite the above function as:

void someFunc()

{

 while select custTable where custNum != 0

 {

 dosomething()

 }

}

Below is another example of wasting CPU cycles in the X++ interpreter:

private ledgerSRUCode somefunc(AccountNum _accountNum)

{

.....

 if (auxAccountNum >= '1910' &&

 auxAccountNum <= '1979')

 {

 ledgerSRUCode = '200';

 }

 if ((auxAccountNum >= '1810' && auxAccountNum <= '1819') ||

 (auxAccountNum >= '1880' && auxAccountNum <= '1889'))

 {

 ledgerSRUCode = '202';

 }

 and so on

 return ledgerSRUCode;

}

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

69

This function only gets the ledgerSRU. So, when this is done, you should exit the function and not

execute the if statements. Also, if you are aware of the most likely results, test for these most likely

options early in your code.

Below is a corrected version:

private ledgerSRUCode someFunc(AccountNum _accountNum)

{

.....

 if (auxAccountNum >= '1910' &&

 auxAccountNum <= '1979')

 {

 return '200';

 }

 if ((auxAccountNum >= '1810' && auxAccountNum <= '1819') ||

 (auxAccountNum >= '1880' && auxAccountNum <= '1889'))

 {

 return '202';

 }

 and so on

}

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

70

Appendix 1: Guidelines for Writing Direct SQL in Upgrade Scripts

Using Set-Based Updates in X++

Whenever possible, set-based updates should be used in place of row-based updates. Set-based

updates have a partial implementation in X++ as insert_recordset, update_recordset, and delete_from.

You can implement set-based operations in X++ when:

 An update involves data or references to a single table only. In other words, the data to be

updated in a table is not derived from another column. For example:

while select forupdate some_table where some_table.some_column == some_value

 {

 some_table.some_column = new_value;

 some_table.doUpdate();

 }

Can be rewritten in X++ as:

Some_table st;

Update_recordset st

Setting some_column == new_value

Where st.some_column = some_value;

If the update method is overridden, the update_recordset will change into a row-by-row

update, executing the update code for each row. You can prevent this by using the

skipDataMethod operator. Refer to Calling skipDataMethods and skipDatabaseLog Before

Calling Update_RecordSet or Delete_From for more details.

 An update_recordset or delete_from that includes in its selection criteria a check for existence or

absence of data in the same or different table. In X++ these can be implemented directly using

the EXISTS Join or NOT EXISTS Join.

For example:

while select SalesBasketId from salesBasket

 where salesBasket.CustAccount == guestAccount

 {

 delete_from salesBasketLine

 where salesBasketLine.SalesBasketId ==

 salesBasket.SalesBasketId;

 }

Can be rewritten as:

delete_from salesBasketLine

exists join salesBasket

where salesBasket.SalesBasketId == salesBasketLine.SalesBasketId

 && salesBasket.CustAccount == guestAccount;

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

71

Executing Direct SQL from X++

How to Execute Direct SQL for X++

 If Direct SQL code is executed using X++, it requires checking for Code Access Security.as follows:

In the variable definition section, add:

SqlStatementExecutePermission permission;

;

In the code section, add:

stmtString = < SQL Statement >;

 stmt = con.createStatement();

 permission = new SqlStatementExecutePermission(stmtString);

 permission.assert();

stmt.executeUpdate(stmtString);

 // the permissions needs to be reverted back to original condition.

CodeAccessPermission::revertAssert();

 Direct SQL stored procedures are executed using X++ as shown in the following example:

str sql;

str dataAreaId;

Connection conn;

SqlStatementExecutePermission permission;

;

dataAreaId = curExt();

sql = = 'execute <StoredProcName> \' + dataAreaId + '\' \'' + numSeq + '\'';

permission = new SqlStatementExecutePermission(sql);

conn = new Connection();

permission = new SqlStatementExecutePermission(sql);

permission.assert();

conn.createStatement().executeUpdate(sql);

// the permissions needs to be reverted back to original condition.

CodeAccessPermission::revertAssert();

Best Practices Warning when Executing Direct SQL

Executing Direct SQL is a deviation from Best Practices recommendations, so, whenever Direct SQL is

executed, the X++ compiler will flag it as a best practice error. To suppress this warning, before the

stmt.executeUpdate(stmtString) statement you will need to place the following comment indicating

that this is a known deviation from best practices:

//BP Deviation Documented

The code will be changed to:

stmtString = < SQL Statement >;

 stmt = con.createStatement();

 permission = new SqlStatementExecutePermission(stmtString);

 permission.assert();

 // BP Deviation Documented

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

72

 stmt.executeUpdate(stmtString);

 CodeAccessPermission::revertAssert();

Using Utility Functions to Execute Direct SQL

Two new methods, statementExeUpdate() and statementExeQuery(), have been added to the

ReleaseUpdateDB class. They can be used to run any Direct SQL statements in ReleaseUpdateDB

based classes. For security reasons, these functions do not have CAS assert() or revertAssert()

methods, these should be called by the caller. See the code example in Stored Procedure and function

Guidelines for ReleaseUpdateDB::statementExeUpdate and ReleaseUpdateDB::statementExeQuery use.

Documenting Direct SQL

For debugging and maintenance purposes, always put the resulting direct SQL statement as a

comment before the code that performs the string construction.

Using Table Names in Direct SQL

Use ReleaseUpdateDB::backendFieldName and ReleaseUpdateDB::backendTableName to look up the

actual table name in the database. These methods use the correct look up procedure:

new DictTable(TableNum(<sometable>)).name(DbBackend::Sql)

new DictField(TableNum(<sometable>),FieldNum(<someTable>,<somefield>)).name(DbBackend::Sql)

Adding Literals in Direct SQL

It is important for security, amongst other advantages, to pass parameters into the Direct SQL

statement. For example, when creating Direct SQL code there are several scenarios where you will

need to add literal values to the SQL statement. The most common examples are data area

identification and empty date strings. These scenarios are handled by the following examples:

 /* UPDATE PROJTRANSPOSTINg

 SET EMPLITEMID = PET.EMPLID,

 CATEGORYID = PET.CATEGORYID,

 PROJTYPE = PT.TYPE,

 QTY = PET.QTy

 FROM PROJTRANSPOSTING PTP, PROJEMPLTRANS PET, PROJTABLE Pt

 WHERE PTP.TRANSID = PET.TRANSId

 AND PTP.PROJTRANSTYPE = 2

 AND PET.PROJID = PT.PROJId

 AND PTP.DATAAREAID = N'xyz' AND PET.DATAAREAID = N'xyz' AND PT.DATAAREAID = N'xyz' */

 sqlStmt = strfmt('UPDATE %1', #T(ProjTransPosting));

 sqlStmt += strfmt(' SET %1 = %2, %3 = %4, %5 = %6, %7 = %8',

 #F(ProjTransPosting, EmplItemId), #AF(ProjEmplTrans, EmplId),

 #F(ProjTransPosting, CategoryId), #AF(ProjEmplTrans, CategoryId),

 #F(ProjTransPosting, ProjType), #AF(ProjTable, Type),

 #F(ProjTransPosting, Qty), #AF(ProjEmplTrans, Qty));

 sqlStmt += strfmt(' FROM %1 %2, %3 %4, %5 %6',

 #T(ProjTransPosting), #A(ProjTransPosting),

 #T(ProjEmplTrans), #A(ProjEmplTrans),

 #T(ProjTable), #A(ProjTable));

 sqlStmt += strfmt(' WHERE %1 = %2 AND %3 = %4 AND %5 = %6 AND %7 = %8 AND %9 = %10 AND %11 = %12',

 #AF(ProjTransPosting, TransId), #AF(ProjEmplTrans, TransId),

 #AF(ProjTransPosting, ProjTransType), int2str(enum2int(ProjTransType::Hour)),

 #AF(ProjEmplTrans, ProjId), #AF(ProjTable, ProjId),

 #AF(ProjTransPosting, DataAreaId), sqlSystem.sqlLiteral(projTransPosting.DataAreaId),

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

73

 #AF(ProjEmplTrans, DataAreaId), sqlSystem.sqlLiteral(projEmplTrans.DataAreaId),

 #AF(ProjTable, DataAreaId), sqlSystem.sqlLiteral(projTable.DataAreaId));

/*

UPDATE SALESLINE

SET SHIPPINGDATEREQUESTED =

(SELECT MAX(DATEEXPECTED) FROM INVENTTRANS

 WHERE INVENTTRANS.DATAAREAID = INVENTTRANS.DATAAREAID

 AND SALESLINE.INVENTTRANSID = INVENTTRANS.INVENTTRANSID

 AND INVENTTRANS.DATEEXPECTED <> '1900-01-01')

WHERE SHIPPINGDATEREQUESTED = '1900-01-01'

AND DATAAREAID = SALESLINE.DATAAREAID

AND EXISTS

(SELECT DATEEXPECTED

FROM INVENTTRANS

WHERE INVENTTRANS.DATAAREAID = N'ext'

AND SALESLINE.INVENTTRANSID = INVENTTRANS.INVENTTRANSID

AND INVENTTRANS.DATEEXPECTED <> '1900-01-01')

*/

 sqlStmt = 'UPDATE ' + dictTable_SalesLine.name(DbBackend::Sql);

 sqlStmt += ' SET ' + dictTable_SalesLine.fieldName(fieldnum(SalesLine,ShippingDateRequested),DbBackend::Sql);

 sqlStmt += ' = (SELECT MAX(' + dictTable_InventTrans.fieldName(fieldnum(InventTrans,DateExpected),DbBackend::Sql);

 sqlStmt += ') FROM ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += ' WHERE ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' + dictTable_InventTrans.fieldName(fieldnum(InventTrans,DataAreaId),DbBackend::Sql);

 sqlStmt += ' = ' + sqlSystem.sqlLiteral(inventTrans.DataAreaId);

 sqlStmt += ' AND ' + dictTable_SalesLine.name(DbBackend::Sql);

 sqlStmt += '.' + dictTable_SalesLine.fieldName(fieldnum(SalesLine,InventTransId),DbBackend::Sql);

 sqlStmt += ' = ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' + dictTable_InventTrans.fieldName(fieldnum(InventTrans,InventTransId),DbBackend::Sql);

 sqlStmt += ' AND ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' + dictTable_InventTrans.fieldName(fieldnum(InventTrans,DateExpected),DbBackend::Sql);

 sqlStmt += ' <> ' + sqlSystem.sqlLiteral('1900-01-01') + ')';

 sqlStmt += ' WHERE ' + dictTable_SalesLine.fieldName(fieldnum(SalesLine,ShippingDateRequested),DbBackend::Sql);

 sqlStmt += ' = ' + sqlSystem.sqlLiteral('1900-01-01');

 sqlStmt += ' AND ' + dictTable_SalesLine.fieldName(fieldnum(SalesLine,DataAreaId),DbBackend::Sql);

 sqlStmt += ' = ' + sqlSystem.sqlLiteral(salesLine.DataAreaId);

 sqlStmt += ' AND EXISTS';

 sqlStmt += ' (SELECT ' + dictTable_InventTrans.fieldName(fieldnum(InventTrans,DateExpected),DbBackend::Sql);

 sqlStmt += ' FROM ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += ' WHERE ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' + dictTable_InventTrans.fieldName(fieldnum(InventTrans,DataAreaId),DbBackend::Sql);

 sqlStmt += ' = ' + sqlSystem.sqlLiteral(inventTrans.DataAreaId);

 sqlStmt += ' AND ' + dictTable_SalesLine.name(DbBackend::Sql);

 sqlStmt += '.' + dictTable_SalesLine.fieldName(fieldnum(SalesLine,InventTransId),DbBackend::Sql);

 sqlStmt += ' = ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' + dictTable_InventTrans.fieldName(fieldnum(InventTrans,InventTransId),DbBackend::Sql);

 sqlStmt += ' AND ' + dictTable_InventTrans.name(DbBackend::Sql);

 sqlStmt += '.' + dictTable_InventTrans.fieldName(fieldnum(InventTrans,DateExpected),DbBackend::Sql);

 sqlStmt += ' <> ' + sqlSystem.sqlLiteral('1900-01-01') + ')';

Specifying DataAreaId in Where-Clauses

The DataAreaId to be used in a where-clause may not be equal to the current company code returned

by curExt(). Therefore, curExt() should not be used to build the query string.

Because of the virtual company feature, it cannot be guaranteed that two tables in any join statement

will fetch its data using the same DataAreaId. In this instance a Where clause should not use the

following predicate: A. DATAAREAID = B.DATAAREAID.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

74

The DataAreaId field should always be compared to a literal or a placeholder.

The following statement may not always work correctly:

DELETE FROM INVENTSUM

WHERE DATAAREAID=N'dmo' AND

EXISTS (SELECT 'x' FROM INVENTTABLE B

WHERE B.DATAAREAID=INVENTSUM.DATAAREAID

AND B.ITEMID=INVENTSUM.ITEMID AND B.ITEMTYPE=2)

The statement should always be written as follows:

DELETE FROM INVENTSUM

WHERE DATAAREAID=N'dmo' AND

EXISTS (SELECT 'x' FROM INVENTTABLE B

WHERE B.DATAAREAID=N'dmo'

AND B.ITEMID=INVENTSUM.ITEMID AND B.ITEMTYPE=2)

In the event that the InventTable is shared among several companies in the ‘dmo’ company, then the

statement should be as follows, where the virtual company is assumed to be named ‘vir’:

DELETE FROM INVENTSUM

WHERE DATAAREAID=N'dmo' AND

EXISTS (SELECT 'x' FROM INVENTTABLE B

WHERE B.DATAAREAID=N'vir'

AND B.ITEMID=INVENTSUM.ITEMID AND B.ITEMTYPE=2)

To get the correct DataAreaId, declare a table buffer of the specific table type and use the value of the

DataAreaId field in the table buffer.

To get the correct formatting with the ‘-s and the preceding N, parse the DataAreaId to the

SqlSystem.sqlLiterals method and use the return value.

The following example assumes that DataAreaId is left justified, which is a valid assumption as it is a

system field where the justification cannot be changed by the customers or partners. The example is

only used for demonstrating the use of DataAreaId. The table names and fields should be retrieved

from the dict classes and the statement should be built using name(DbBackend::Sql).

The following shows the use of DataAreaId and sqlLiteral:

static void UseDataAreaId(Args _args)

{

 InventSum inventSum;

 InventTable inventTable;

 str sqlStr;

 SqlSystem sqlSystem = new SqlSystem();

 ;

 sqlStr = strfmt(@"DELETE FROM INVENTSUM

 WHERE DATAAREAID=%1 AND

 EXISTS (SELECT 'x' FROM INVENTTABLE B

 WHERE B.DATAAREAID=%2

 AND B.ITEMID=INVENTSUM.ITEMID AND B.ITEMTYPE=2)",

 sqlSystem.sqlLiteral(inventSum.dataAreaId),

 sqlSystem.sqlLiteral(inventTable.dataAreaId));

}

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

75

Determining Whether a Table or Field Exists in the Database

You can test whether a table exists in the database by using the isTmp() method on the table buffer as

shown in the following example:

static void TestTable(Args _args)

{

 SalesTable salesTable;

 ;

 if (!salesTable.isTmp()) // remember the NOT operator

 {

 // table exists in the database.

 // isTmp will return true if the table is

 // specifically marked as temporary or if it is

 // disabled by the configuration key.

 }

}

You can test whether a field exists in the database by testing its configuration key as follows:

static void TestField(Args _args)

{

 DictField dictField;

 ;

 dictField = new DictField(tableNum(SalesTable),

 fieldNum(SalesTable, PriceGroupId));

 if (isConfigurationKeyEnabled(dictField.configurationKeyId()))

 {

 // Field exists in the database

 }

}

There is no need to test every field. If you know the field is always in the database because the table is

in the database, then there is no need to test each field individually. You only need to test fields that

have a different configuration key to the table.

Defining String Lengths

When writing Direct SQL or stored procedures, it cannot be assumed that a given string field has the

currently defined length as it may have been changed by the user before the execution of the upgrade

job.

A variable designed to hold an ItemId cannot be defined as NVARCHAR(20) even though the current

maximum length for the ItemId data type is 20. It may have been changed to a higher value, and,

consequently, the variable cannot hold the entire value for all items. The length of the variable should

therefore be defined taking the length of the type at execution time into consideration.

The current maximum length of a field should be retrieved through the

ReleaseUpdateDB::fieldStringSize method.

Applying LTrim for String Comparisons in the WHERE Clause

In X++, left and right justification is managed by the kernel using string comparisons in the WHERE

clause. Microsoft Dynamics AX 4.0 is left justified when installed, so there is no need to handle

compares within Microsoft shipped upgrade scripts. If customers use mixed-mode, then, in Direct SQL,

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

76

the code needs to check the justification of the two sides of the comparison and apply LTRIM on the

right justified side if the two sides have different justification properties.

The new static method fields2WhereClause() is created in ReleaseUpdateDB class. It returns a string to

be used in a Direct SQL WHERE clause.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

77

Implementing Complex Inserts and Updates in Direct SQL

Complex updates cannot be implemented directly in X++. When these conditions are encountered,

the update operations must be rewritten in Direct SQL.

If the method being examined involves one or a small number of update operations, the SQL can be

constructed as a string and executed as described in Executing Direct SQL from X++ in this document.

For more complex methods that operate on multiple tables, it is advisable that the method be

rewritten as a stored procedure. The stored procedure can be executed via X++ as described in Stored

Procedure and Function Guidelines in this document.

Creating Stored Procedures and Functions

If stored procedures are needed in order to implement direct Transact-SQL logic, it may be created

during execution time, executed, and then dropped after the upgrade script has run.

The AOS account has the privilege to create a stored procedure but it does not have execute

permission on all stored procedures or functions. In order for your upgrade script to have the

permission to execute the stored procedure or function you created, you need to prefix the object

with the schema that the AOS account owns, and always use the two part name:

[schema name].[object name]

in the create, execute, and drop statements.

To get the correct schema name, use the utility function:

ReleaseUpdateDB::getSchemaName().

Example:

void createDimHistory_PurchInvoice_DSQL()

{

 InventReportDimHistory dimHistory;

 VendInvoiceTrans vendInvoiceTrans;

 InventTrans inventTrans;

 SqlSystem sqlSystem = new SqlSystem();

 SqlStatementExecutePermission sqlStatementExecutePermission;

 str str_ExecSproc;

 str str_SQLEXEC = 'EXEC [%1].%2 %3';

 void runOraCode()

 {

 while select vendInvoiceTrans

 exists join inventTrans

 where inventTrans.InventTransId == vendInvoiceTrans.InventTransId

 && inventTrans.InvoiceId == vendInvoiceTrans.InvoiceId

 notexists join dimHistory

 where dimHistory.InventTransId == vendInvoiceTrans.InventTransId

 && dimHistory.TransRefId == vendInvoiceTrans.InvoiceId

 && dimHistory.TransactionLogType == InventReportDimHistoryLogType::PurchInvoice

 {

 InventReportDimHistory::addFromVendInvoiceTrans(vendInvoiceTrans);

 }

 }

 ;

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

78

 if (dimHistory.isTmp() || inventTrans.isTmp() || vendInvoiceTrans.isTmp())

 return;

 select firstonly RecId from vendInvoiceTrans;

 if (!vendInvoiceTrans.RecId)

 return;

 switch(SqlSystem::databaseBackendId())

 {

 case DatabaseId::Oracle:

 runOraCode();

 break;

 case DatabaseId::MS_Sql_Server:

 str_ExecSproc = strfmt(str_SQLEXEC,ReleaseUpdateDB::getSchemaName()

 ,#CREATEDIMHISTORY_PURCHINVOICE

 ,sqlSystem.sqlLiteral(vendInvoiceTrans.DataAreaId));

 sqlStatementExecutePermission = new SqlStatementExecutePermission(str_ExecSproc);

 sqlStatementExecutePermission.assert();

 ReleaseUpdateDB::statementExeUpdate(str_ExecSproc);

 CodeAccessPermission::revertAssert();

}

When writing stored procedures that replace X++ methods or functions in the upgrade class, use the

following guidelines:

 The stored procedure name should be the same as the method or function that it is replacing.

 The stored procedure should include the original X++ statements as comments to provide context

during testing and troubleshooting.

 Transactional control statements (BEGIN TRANSACTION, COMMIT) should not be coded in the

stored procedure. Transaction management is implemented in X++.

 The stored procedure must accept a required parameter of DATAAREAID as data type

NVARCHAR(3).

 If the stored procedure will be populating a table with a formatted business sequence column

(described in Assigning Business Sequences on Insert section of this document), the procedure

must accept the following parameters:

 @NUMBERSEQUENCE NVARCHAR(20). This will be used as a key to the

NUMBERSEQUENCE table to retrieve the next key value and format requirements.

 @RJUSTIFY CHAR(1). If “Y”, this indicates the column is to be right justified.

Implementing Set-Based Updates with Joins

Update operations that involve true joins (in contrast to exists joins) cannot be directly implemented

in X++ and represent one case where a Transact-SQL rewrite is needed. The following code is an

example of an update that derives data from another table:

while select forupdate salesLine

 where salesLine.ShippingDateRequested == dateNull()

 join firstonly maxof(DateExpected) from inventTrans

 group by InventTransId

 where inventTrans.InventTransId == salesLine.InventTransId &&

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

79

 inventTrans.DateExpected != dateNull()

 {

 salesLine2 =

 SalesLine::findInventTransId(inventTrans.InventTransId,true);

 salesLine2.ShippingDateRequested = inventTrans.DateExpected;

 if (salesLine2)

 salesLine2.doUpdate();

 }

The corresponding Transact-SQL update is written as follows:

UPDATE SALESLINE

SET SHIPPINGDATEREQUESTED =

(SELECT MAX(B1.DATEEXPECTED) FROM INVENTTRANS B1

 WHERE A.DATAAREAID = B1.DATAAREAID

 AND A.DATAAREAID = @dataareaid

 AND A.INVENTTRANSID = B1.INVENTTRANSID

 AND B1.DATEEXPECTED <> '1900-01-01'

 AND A.SHIPPINGDATEREQUESTED = '1900-01-01')

FROM SALESLINE A, INVENTTRANS B0

WHERE A.SHIPPINGDATEREQUESTED = '1900-01-01'

AND A.DATAAREAID = @dataareaid

AND A.INVENTTRANSID = B0.INVENTTRANSID

AND B0.DATEEXPECTED <> '1900-01-01'

Using Direct SQL for Set-Based Updates

The following code is an example of performing a set-based update using the

updateSalesAndTransLineDlvAddress:

 while select salesTable

 {

 update_recordset salesLine

 setting deliveryAddress = salesTable.DeliveryAddress,

 deliveryName = salesTable.DeliveryName,

 deliveryStreet = salesTable.DeliveryStreet,

 deliveryZipCode = salesTable.DeliveryZipCode,

 deliveryCity = salesTable.DeliveryCity,

 deliveryCounty = salesTable.DeliveryCounty,

 deliveryState = salesTable.DeliveryState,

 deliveryCountryRegionId = salesTable.DeliveryCountryRegionId

 where salesLine.SalesId == salesTable.SalesId

 && salesLine.DeliveryAddress == '';

 //The journal lines must be updated for intrastat to function

 update_recordset custInvoiceTrans

 setting DlvCountryRegionId = salesTable.DeliveryCountryRegionId,

 DlvCounty = salesTable.DeliveryCounty,

 DlvState = salesTable.DeliveryState

 where custInvoiceTrans.SalesId == salesTable.SalesId

 && custInvoiceTrans.DlvCountryRegionId == '';

 update_recordset custPackingSlipTrans

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

80

 setting DlvCountryRegionId = salesTable.DeliveryCountryRegionId,

 DlvCounty = salesTable.DeliveryCounty,

 DlvState = salesTable.DeliveryState

 where custPackingSlipTrans.SalesId == salesTable.SalesId

 && custPackingSlipTrans.DlvCountryRegionId == '';

 }

In this example, the code loops through every SalesTable Entry and:

 Updates SalesLine with the relevant address information for the salesid.

 Updates CustInvoicetrans with the address information for salesid.

 Updates custPackingSlipTrans with the address information for salesid.

Direct SQL needs to be rewritten in this case because of the need to:

 Perform one mass update where possible.

 Reduce looping on a large transactional table such as salesline.

The following is the Transact-SQL code that you should generate from X++:

UPDATE SALESLINE

SET DELIVERYADDRESS = T.DELIVERYADDRESS,

 DELIVERYNAME = T.DELIVERYNAME,

 DELIVERYSTREET = T.DELIVERYSTREET,

 DELIVERYZIPCODE = T.DELIVERYZIPCODE,

 DELIVERYCITY = T.DELIVERYCITY,

 DELIVERYCOUNTY = T.DELIVERYCOUNTY,

 DELIVERYSTATE = T.DELIVERYSTATE,

 DELIVERYCOUNTRYREGIONID = T.DELIVERYCOUNTRYREGIONID

FROM SALESLINE L,

 SALESTABLE T

WHERE T.DATAAREAID = @DATAAREAID

AND L.DATAAREAID = T.DATAAREAID

AND L.SALESID = T.SALESID

AND L.DELIVERYADDRESS = ''

UPDATE CUSTINVOICETRANS

SET DLVCOUNTRYREGIONID = T.DELIVERYCOUNTRYREGIONID,

 DLVCOUNTY = T.DELIVERYCOUNTY,

 DLVSTATE = T.DELIVERYSTATE

FROM CUSTINVOICETRANS C,

 SALESTABLE T

WHERE T.DATAAREAID = @DATAAREAID

AND C.DATAAREAID = T.DATAAREAID

AND C.SALESID = T.SALESID

AND C.DLVCOUNTRYREGIONID = ''

UPDATE CUSTPACKINGSLIPTRANS

SET DLVCOUNTRYREGIONID = T.DELIVERYCOUNTRYREGIONID,

 DLVCOUNTY = T.DELIVERYCOUNTY,

 DLVSTATE = T.DELIVERYSTATE

FROM CUSTPACKINGSLIPTRANS C,

 SALESTABLE T

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

81

WHERE T.DATAAREAID = @DATAAREAID

AND C.DATAAREAID = T.DATAAREAID

AND C.SALESID = T.SALESID

AND C.DLVCOUNTRYREGIONID = ''

The performance improvement achieved in this example is significant. On a database, Baseline ran for

24 minutes. With SET BASED CHANGE, it ran in 16 seconds.

This type of update, which does not require sequencing conditional to each record, can be written in

X++ as a sequence of Direct SQL statements.

Using a Set-Based Insert Operation

There are a number of cases in the upgrade process where tables that are new in

Microsoft Dynamics AX 4.0 must be populated from one or more tables. If the volume of data to be

processed in these tables is large, and if INSERT_RECOREDSET does not achieve the desired

performance, then using a set-based insert operation is required.

Example Transact-SQL set-based inserts are written as:

INSERT INTO SOME_NEW_TABLE (column-list)

 SELECT column-list FROM SOME_OLD_TABLE WHERE criteria

System Sequence Considerations

A complicating factor when we use a Direct SQL set-based insert into a table in the

Microsoft Dynamics AX database is that tables have one or more sequentially assigned numbers which

are derived from the SYSTEMSEQUENCESand NUMBERSEQUENCETABLE tables.

A two-step process of initially populating a temporary table that uses a DBMS-specific sequence

mechanism (IDENTITY for Transact-SQL, ROW NUMBER for Oracle) and then copying the temporary

table’s rows to the final permanent table is required.

The two sections that follow provide Transact-SQL examples of populating both a system sequence

(RECID) and business sequence.

RECID in Microsoft Dynamics AX 2012

The RECID allocation algorithm has undergone significant changes in Microsoft Dynamics AX 2012. A

RECID can be allocated in two different ways:

 Kernel automatically allocates the RECID during insert and INSERT_RECORDSET

 User manually chooses to allocate the RECID

In the case of upgrade, we are concerned about #2. This section will document the allocation APIs, the

usage and some patterns. The document does not dwell in the allocation algorithm itself.

Manually allocating RECID

There are cases where you want to allocate the RECID manually in your script. The following are some

of the scenarios:

 You are trying to do a bulk insert manually. There are cases where row by row insert is not

sufficient and you want to do a bulk insert. Import/Export code is an example of this usage

pattern. In such a case, you need to allocate the RECID manually.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

82

 An upgrade script uses direct SQL to insert data. In this usage pattern, you need to allocate RECID

manually.

 Upgrade script was optimized to use RecordInsertList instead of row by row insert. But, cross

references need to be set up on another table (for example REFRECID). In such a case, allocate the

RECID upfront for the record so that cross references can be patched up.

In all the above scenarios, the allocation is done the same way, using the RECID allocation APIs. There

are three APIs that you need to know about:

RECID suspension - suspendRecids

RECID reservation - reserveValues

RECID releasing suspension - removeRecidSuspension

The APIs are members of the SystemSequence class.

The following is a code snippet of how to use the allocation APIs.

static void Job2(Args _args)

{

 SystemSequence s;

 AAMyTable t;

 int64 startValue;

 int i;

 ;

 s = new SystemSequence();

 s.suspendRecIds(tablenum (AAMyTable));

 startValue = s.reserveValues(10, tablenum(AAMyTable));

 for (i = 0; i <10; i++)

 {

 t.IntFld = i;

 t.RecId = startValue + i;

 t.insert();

 }

 s.removeRecIdSuspension(tablenum (AAMyTable));

}

Create a new instance of the

systemSequence class

Suspend the RECID allocation by the

kernel

Reserve the RECID by passing in the

number of id’s to reserve. The return

value is the starting value of the

range you reserved. The API

gaurantees that the allocated id’s

are contiguous.

Assign the RECID to the RECID column

Remove the suspension

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

83

Tips on using the RECID allocation API:

 Once you suspend the RECID allocation for that table, the kernel will not dispense any more

RECIDs for that table on that session.

 The ReserveValues API will guarantee contiguity of the RECID range that is being reserved.

 If you try to insert an id that has not been reserved, then kernel will raise an exception.

 If you are trying to assign a RECID without suspending, kernel will raise an exception.

 If you do not remove the suspension after using the reservation API’s, the suspension remains

until the end of your session.

Assigning RECID on INSERT

RECID is a continuously ascending key value for each table in the Microsoft Dynamics AX schema. It is

derived from table SYSTEMSEQUENCES which keeps the next available key value (NEXTVAL) for each

table by that table’s Table ID.

The SystemSequences table may be empty if the table is new and no records have been inserted.

Please refer to the ReleaseUpdateDB39_Cust.createDimHistorySprocs(), which provides an example of

the solution for that problem: it checks if a RECID existed and if not, inserting and deleting a record to

get the RECID’s started.

In Microsoft Dynamics AX 4.0, RECID is a 64-bit integer column; this data type is implemented in SQL

Server as BIGINT.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

84

The abbreviated example below illustrates using SYSTEMSEQUENCES and a temporary table using

IDENTITY for sequential numbers:

CREATE PROCEDURE initFromSMMQuotationTable

 @DATAAREAID NVARCHAR(3

AS

DECLARE @NEXTVAL BIGINT,

 @ROWCOUNT BIGINT

SELECT ,

 RECID = IDENTITY(BIGINT,1,1) AS QUOTATIONID

INTO #TEMP

FROM DEL_SMMQUOTATIONTABLE

WHERE QUOTATIONSTATUS = 0 -- SMMQUOTATIONSTATUS::INPROCESS

SELECT @NEXTVAL=NEXTVAL

FROM SYSTEMSEQUENCES (UPDLOCK, HOLDLOCK)

WHERE ID = -1

AND TABID = 1967

INSERT INTO SALESQUOTATIONTABLE

(column-list)

SELECT,

 RECID = QUOTATIONID+@NEXTVAL

FROM #TEMP

SELECT @ROWCOUNT = COUNT(*) FROM #TEMP

UPDATE SYSTEMSEQUENCES

SET NEXTVAL=NEXTVAL + @ROWCOUNT

WHERE ID = -1

AND TABID = 1967

GO

Looking Up Table ID and Field IDs

If you are gettingTABID in the stored procedure, you should perform the fetch from the SQL

Dictionary.

Assigning Business Sequences on Insert

Business sequences are a more complex problem to solve with Direct SQL; not only is the number

sequentially assigned from a table (NUMBERSEQUENCETABLE), but you also have to consider the

following factors:

 The specific number sequence to be used for a specific column.

 Whether the column is to be left or right justified.

 The customer’s specific formatting requirements (FORMAT) for the column.

The first two factors are accessible in X++ and, as described in the stored procedure guidelines above,

must be passed as parameters to any stored procedure which must populate a formatted business

sequence number.

Assign an IDENTITY column

with a starting value of 0

incremented by 1

Retrieve the next value

for RECID for this table

(by TABID)

When we insert into the

permanent table, we add the

temporary table’s IDENTITY

column to the next value

retrieved from

SYSTEMSEQUENCES

We update SYSTEMSEQUENCES to

reflect the number of rows

that we have added to this

table

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

85

Once the specific numbersequence to be used is known, the formatting requirement must be

retrieved from the FORMAT column of the NUMBERSEQUENCETABLE table. The following lists

additional details for this scenario.

 The stored procedure is passed an indicator that specifies if right justification is to take place. A

value of “Y” means right-justify the column. The default is to left-justify the column.

 Because formatted sequence columns are of different maximum lengths, you must look up the

length of the column that is to be formatted and record the length in your procedure. The

instructions that follow will describe how you pass the column’s length, along with the formatting

requirements, to a user-defined SQL function that will format the column correctly.

The example below illustrates the use of a user-defined function FN_FMT_NUMBERSEQUENCE which

accomplishes the formatting and justification requirements of a business sequence column:

CREATE PROCEDURE initFromSMMQuotationTable

 @DATAAREAID NVARCHAR(3),

 @NUMBERSEQUENCE NVARCHAR(20),

 @RJUSTIFY CHAR(1)

AS

DECLARE @NEXTREC BIGINT,

 @FORMAT NVARCHAR(40),

 @ROWCOUNT BIGINT

 @RJUSTIFY_LENGTH INT

IF RJUSTIFY = ‘Y’

 SET @RJUSTIFY_LENGTH = 40

ELSE

 SET @RJUSTIFY_LENGTH = 0

SELECT QUOTATIONID = IDENTITY(BIGINT,1,1),

INTO #TEMP

FROM DEL_SMMQUOTATIONTABLE

WHERE QUOTATIONSTATUS = 0 -- SMMQUOTATIONSTATUS::INPROCESS

SELECT @NEXTREC = NEXTREC, @FORMAT=FORMAT

FROM NUMBERSEQUENCETABLE (UPDLOCK, HOLDLOCK)

WHERE DATAAREAID = @DATAAREAID

AND NUMBERSEQUENCE = @NUMBERSEQUENCE

INSERT INTO SALESQUOTATIONTABLE

(column-list)

SELECT

 DBO.FN_FMT_NUMBERSEQUENCE(@FORMAT,QUOTATIONID,@NEXTREC, @RJUSTIFY_LENGTH) ,

FROM #TEMP

SELECT @ROWCOUNT = COUNT(*) FROM #TEMP

You must determine the

column’s length if it is

to be right justified

and set a variable so we

can pass that to the

formatting function

As in the previous

example, we create an

IDENTITY column in the

temporary table with

initial value of 0

Retrieve the next value

from NUMBERSEQUENCETABLE

using the NUMBERSEQUENCE

key supplied

Details on calling this

function follow

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

86

UPDATE NUMBERSEQUENCETABLE

SET NEXTREC = NEXTREC+@ROWCOUNT

WHERE DATAAREAID = @DATAAREAID@NUMBERSEQUENCE

AND NUMBERSEQUENCE = @NUMBERSEQUENCE

In many cases it will be necessary to assign a sequential number both for RECID and a business

sequence column. However, SQL Server only permits one IDENTITY column per table.

The following example demonstrates how to use the single IDENTITY column for both purposes. This

example is also useful as a template for creating new procedures to upgrade data into new tables in

the Microsoft Dynamics AX 4.0 schema:

CREATE PROCEDURE initFromSMMQuotationTable

 @DATAAREAID NVARCHAR(3),

 @NUMBERSEQUENCE NVARCHAR(20),

 @RJUSTIFY CHAR(1) =’N’

AS

DECLARE @NEXTREC BIGINT,

 @NEXTVAL BIGINT,

 @FORMAT NVARCHAR(40),

 @ROWCOUNT BIGINT

 @RJUSTIFY_LENGTH INT

-- Set the length of the column that is to be right-justified

-- Confirm length in table definition

IF RJUSTIFY = ‘Y’

 SET @RJUSTIFY_LENGTH = 40

ELSE

 SET @RJUSTIFY_LENGTH = 0

-- The SELECT INTO creates a temp table

-- RECID is assigned during the insert and given

-- a sequentially ascending number starting with 0

SELECT QUOTATIONID = ‘’

 RECID = IDENTITY(BIGINT,1,1),

INTO #TEMP

FROM DEL_SMMQUOTATIONTABLE

WHERE QUOTATIONSTATUS = 0 -- SMMQUOTATIONSTATUS::INPROCESS

-- Retrieve next key value for RECID

-- Note TABID; you need to determine the

-- value from the SQLDICTIONARY table.

SELECT @NEXTVAL=NEXTVAL

FROM SYSTEMSEQUENCES (UPDLOCK, HOLDLOCK)

WHERE ID = -1 AND TABID = 1967

-- Retrieve next key value for business sequence (QUOTATIONID)

-- NUMBERSEQUENCE is supplied in X++ and passed in @NUMBERSEQUENCE

SELECT @NEXTREC = NEXTREC, @FORMAT=FORMAT

FROM NUMBERSEQUENCETABLE (UPDLOCK, HOLDLOCK)

WHERE DATAAREAID = @DATAAREAID AND NUMBERSEQUENCE = @NUMBERSEQUENCE

Update NUMBERSEQUENCE to

reflect the number of

rows added to the table

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

87

-- Insert from the temp table to the final table. The temp table RECID

--is used to supply values to both QUOTATIONID and RECID in the final table

INSERT INTO SALESQUOTATIONTABLE

(column-list)

SELECT

 DBO.FN_FMT_NUMBERSEQUENCE(@FORMAT, RECID,@NEXTREC, @RJUSTIFY_LENGTH) ,

 ,

 RECID+@NEXTVAL

FROM #TEMP

-- Row count of temp table then used to update both NUMBERSEQUENCETABLE

-- and SYSTEMSEQUENCES tables

SELECT @ROWCOUNT = COUNT(*) FROM #TEMP

UPDATE NUMBERSEQUENCETABLE SET NEXTREC = NEXTREC+@ROWCOUNT

WHERE DATAAREAID = @DATAAREAIDAND AND NUMBERSEQUENCE = @NUMBERSEQUENCE

UPDATE SYSTEMSEQUENCES SET NEXTVAL=NEXTVAL + @ROWCOUNT

WHERE ID = -1 AND TABID = 1967

Calling FN_FMT_NUMBERSEQUENCE

A user defined function FN_FMT_NUMBERSEQUENCE is provided to assist with the formatting

requirements of a business sequence column. This function enables the following operations to be

performed:

 Adds the value of the IDENTITY column to the NEXTREC value retrieved from

NUMBERSEQUENCETABLE.

 Formats the result according to the FORMAT column retrieved from NUMBERSEQUENCETABLE.

 Right justifies the formatted column to the length specified. If the function encounters a value of

0, no justification occurs and the formatted value remains left justified by default.

The parameters that are supplied to FN_FMT_NUMBERSEQUENCE are:

 The FORMAT column value from NUMBERSEQUENCETABLE.

 The integer value to be formatted.

 The value from NEXTREC in NUMBERSEQUENCETABLE. If this is not supplied, it is set to 0 by

default.

 The length of the column to be right justified. If this is not supplied it is set to 0 by default. If 0

is specified or becomes the default, then no justification occurs.

The ReleaseUpdateDB38_Basic::createFnFmtNumberSequence method creates the

FN_FMT_NUBMERSEQUENCE function. If your script needs to call the function, you should make the

script depend on the ReleaseUpdateDB38_Basic::createFnFmtNumberSequence script and then you

can reference the function in your Direct SQL code.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

88

Appendix 2: Debugging batch jobs.

Debugging upgrade batch jobs in Microsoft Dynamics AX 2012:

By default, batch jobs in Microsoft Dynamics AX 2012 run as Intermediate Language(IL)

code. For more information, see How to: Debug IL Code in Microsoft Dynamics AX 2012.

When you add or change an upgrade script in the batch, you must do an X++ IL

incremental build. Right-click on the root node of the AOT, point to Add-Ins, and then

click on X++ IL incremental build.

Debugging upgrade batch jobs in Microsoft Dynamics AX 4.0 0r Microsoft

Dynamics AX 2009:

 Edit the method runsImpersonated of your batch job class to always return

True. For upgrade scripts, the class is ReleaseUpdateExecute.

 In Microsoft Dynamics AX 2009 this fix may be needed, for more information

see Debugging non-interactive X++ code in Dynamics AX 2009 when running on

Windows Server 2008.

file:///C:/Users/jpfau/Desktop/Convergence%20post/www.microsoft.com/dynamics
http://msdn.microsoft.com/en-ca/library/aa673589.aspx
http://msdn.microsoft.com/en-ca/library/aa673589.aspx

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

89

Appendix 3: Changes in writing data upgrade scripts for
Microsoft Dynamics AX 2013 R3

There are two major-version upgrade paths and two minor-version upgrade paths.

Use the major-version upgrade paths when upgrading AX 4.0 or AX 5.0 to AX 2013 R3.

Use the minor-version upgrade paths when upgrading from AX 6.0/6.1 to AX 2013 R3.

Minor-version upgrades run only the target upgrade scripts in place.

When doing major-version upgrades, observe the following guidelines:

 There is no change in the way the scripts are written in the major-version

upgrade; the scripts should be written as they would be for an upgrade to AX 6.2.

 All major-version scripts should stay in either ReleaseUpdateDB41_<Module> or

ReleaseUpdateDB60_<Module> classes.

 You can update the existing methods or add new methods to the existing/new

classes.

When doing minor-version upgrades, observe the following guildelines:

o Class naming convention: ReleaseUpdateDB<Version>_<Module>, where the

version is 6.0 – the version you upgrade from. (Note that versions 6.0 and 6.1

are both treated as 6.0). Sample script: ReleaseUpdateDB60_Administrator.

updateSysEDTMigration() is a minor-version upgrade script from AX 6.0/6.1

to AX 6.3.

o Script version: The script version is defined by the #version macro in the class

declaration. In a minor-version upgrade, it is the version that you upgrade

from. For example, #define.version(sysReleasedVersion::v60) means an

upgrade from AX 6.0/6.1 when it is applied on a minor-version script.

o Script stage: As for the major-version scripts, there is a set of script stages

that should be used when setting the attributes for a minor-version script:

 ReleaseUpdateScriptStage::PreSyncUpdate: Pre-synchronization

minor-upgrade script.

 ReleaseUpdateScriptStage::PostSyncUpdate: Post-synchronization

minor-upgrade script.

 ReleaseUpdateScriptStage::AdditionalUpdate: Additional minor-

upgrade script.

o Other upgrade script attributes are used just as they are in the major-version

upgrade scripts.

o Required init* jobs methods: As for a major-version script, there is a new set

of required methods that must be added to the script class:

initPreSyncUpdateJobs, initPostSyncUpdateJobs, and

initAdditionalcUpdateJobs. These methods contain a single line of code that is

used by the Upgrade framework: #initSyncJobsPrefix. To save time, you can

just copy these methods from any existing class.

When writing minor-version upgrade scripts to upgrade from AX 6.2 to AX 2013 R3,

observe the following guidelines:

o Class-naming convention: ReleaseUpdateDB<Version>_<Module>, where the

version you are upgrading from is 6.2. Sample script:

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

90

ReleaseUpdateDB62_Administrator. postSyncScript() is a minor-version

upgrade script from AX 6.2 to AX 6.3.

o Script version: The script version is defined by the #version macro in the class

declaration. In a minor-version upgrade, it is the version that you upgrade

from. For example, #define.version(sysReleasedVersion::v62) means an

upgrade from AX 6.2 when it is applied on a minor-version script.

o Script stage: As for the major-version scripts, there is a set of script stages

that should be used when setting the attributes for a minor-version script:

 ReleaseUpdateScriptStage::PreSyncUpdate: Pre-synchronization

minor-upgrade script.

 ReleaseUpdateScriptStage::PostSyncUpdate: Post-synchronization

minor-upgrade script.

 ReleaseUpdateScriptStage::AdditionalUpdate: Additional minor-

upgrade script.

o Other upgrade script attributes are used just as they are in the major-version

upgrade scripts.

o Required init*Jobs methods: As for a major-version script, there is a new set

of required methods that must be added to the script class:

initPreSyncUpdateJobs, initPostSyncUpdateJobs, and

initAdditionalcUpdateJobs. These methods contain a single line of code that is

used by the Upgrade framework: #initSyncJobsPrefix. To save time, you can

just copy these methods from any existing class.

Note: When writing minor-version upgrade scripts, keep in mind that the scripts are for

upgrades from the latest cumulative update (AX 6.0/6.1+CU5, AX 6.2+CU7).

Note: From the preceding naming convention, an in-place upgrade script from AX

6.0/6.1 to AX 6.3 and a major upgrade script from AX 4.0/5.0 to AX 6.3 can be in the

same ReleaseUpdateDB60_* class, but they have different Stage attributes.

Understanding the #version macro in the classes:

 In a major-version upgrade, #version defines the version you upgrade to.

 In a minor-version upgrade, #version defines the version you upgrade from.

How to test load/run your minor-version scripts:

 During development, you might want to check whether your minor-version scripts

load properly. Use the following steps:

1. Generate incremental CIL if there is any change in the scripts.

2. Run the following job to clean up any previously loaded scripts so you can

reload them (you must update one line of code to reflect the version you

upgrade from; see the TODO that follows):

static void CleanupScripts(Args _args)
{
 SysSetupLog sysSetupLog;
 SysSetupCompanyLog sysSetupCompanyLog;
 ReleaseUpdateScriptsHistory releaseUpdateScriptsHistory;
 ReleaseUpdatePrioritizedJobs releaseUpdatePrioritizedJobs;
 ReleaseUpdateMinorScripts releaseUpdateMinorScripts;

 appl.globalCache().set(staticMethodStr(ReleaseUpdateDB, getFromVersionEx), 0,
sysReleasedVersion::v62);// TODO: v60 or v62 depending on which version you upgrade
from.

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

91

 ReleaseUpdateDB::cleanupJobs();
 ReleaseUpdateCockpit::cleanupBatch();

 delete_from releaseUpdateMinorScripts;

 delete_from sysSetupCompanyLog;
 delete_from releaseUpdateScriptsHistory;
 delete_from releaseUpdatePrioritizedJobs;
 delete_from sysSetupLog where sysSetupLog.Name ==
classStr(SysCheckListItem_LoadUpdateExScripts);
 ReleaseUpdateDB::setMinorVersionUpdateInProgress(false);
 SysChecklist_Update::resetCheckList();
}

3. Open the Upgrade In-Place checklist (SysCheckList_Update menu item), and

click Presynchronize. Start the data upgrade or upgrade additional features,

depending on what type of scripts you want to load (PreSync, PostSync, or

Additional).

4. Verify that your scripts load correctly in the cockpit form.

5. You can also click the Run button to schedule and run the scripts; however,

make sure the batch is configured properly in the SysServerConfig form, and

that the batch server is assigned to the Data Upgrade group in the

BatchGroup form. If you reconfigure a batch, you might need to restart the

AOS server.

The following table shows how the upgrade framework picks the scripts based on the

source version and script version.

Upgrade path Script picked by the framework (based on its

#version)

AX 4 to AX 6.x sysReleasedVersion::v41 &

sysReleasedVersion::60

AX 5 to AX 6.x sysReleasedVersion::60

AX 6.0 to AX 6.3 sysReleasedVersion::60

AX 6.2 to AX 6.3 sysReleasedVersion::62

Microsoft Dynamics AX

How to Write Data Upgrade Scripts for Microsoft Dynamics AX 2012

92

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables

you and your people to make business decisions with greater confidence. Microsoft Dynamics

works like and with familiar Microsoft software, automating and streamlining financial, customer
relationship and supply chain processes in a way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989

Worldwide +1-701-281-6500

www.microsoft.com/dynamics

This document is provided “as-is.” Information and views expressed in this document, including
URL and other Internet Web site references, may change without notice. You bear the risk of using

it.

Some examples depicted herein are provided for illustration only and are fictitious. No real
association or connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any
Microsoft product. You may copy and use this document for your internal, reference purposes. You
may modify this document for your internal, reference purposes.

© 2014 Microsoft Corporation. All rights reserved.

